Senotherapy

Senotherapy is an early-stage basic research field for development of possible therapeutic agents and strategies to specifically target cellular senescence,[1] an altered cell state associated with ageing and age-related diseases. The name derives from intent of the proposed anti-aging drug to halt "senescence".[1] As of 2019, much of the research remains preliminary and there are no drugs approved for this purpose.

Types

Senotherapeutics include:

  • Geroprotectors – agents/strategies which prevent or reverse the senescent state by preventing triggers of cellular senescence, such as DNA damage,[2][3][4] oxidative stress,[5] proteotoxic stress,[6] telomere shortening [7] (i.e. telomerase activators).
  • SASP inhibitors – agents interfering with pro-inflammatory senescence-associated secretory phenotype (SASP)[8][9] production, including:
    1. Glucocorticoids as potent suppressors of selected components of the SASP[10]
    2. Statins such as simvastatin, that can reduce the expression of pro-inflammatory cytokines (IL-6, IL-8, and MCP-1)[11]
    3. JAK1/2 inhibitors such as ruxolitinib[12][13]
    4. NF-κB and p38 inhibitors
    5. IL-1α blockers
    6. Mitochondrial depleters in the case of impaired mitophagy[14]
  • Senolytics – small molecules that specifically induce cell death in senescent cells,[15][16] targeting survival pathways and anti-apoptotic mechanisms,[17] antibodies and antibody-mediated drug delivery medications. Unlike SASP inhibitors, senolytics can be effective by intermittent rather than continuous application.[18]
  • Senomorphics – small molecules that suppress senescent phenotypes without cell killing[19]
  • Gene therapy strategies – edit the genes of the cells of an organism in order to increase their resistance to aging, senile diseases and to prolong the life of the organism[3][20]

See also

References

  1. 1 2 Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499.
  2. Misra J, Mohanty ST, Madan S, Fernandes JA, Hal Ebetino F, Russell RG, Bellantuono I (March 2016). "Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function". Stem Cells. 34 (3): 756–767. doi:10.1002/stem.2255. PMC 4832316. PMID 26679354.
  3. 1 2 Xiong S, Patrushev N, Forouzandeh F, Hilenski L, Alexander RW (September 2015). "PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases". Cell Reports. 12 (9): 1391–1399. doi:10.1016/j.celrep.2015.07.047. PMC 4549794. PMID 26299964.
  4. Wahlestedt, M., Pronk, C. J., & Bryder, D. (2015). Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation. Stem cells translational medicine, 4(2), 186-194.
  5. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. (November 2009). "Induction of autophagy by spermidine promotes longevity". Nature Cell Biology. 11 (11): 1305–1314. doi:10.1038/ncb1975. PMID 19801973. S2CID 3126330.
  6. Pride H, Yu Z, Sunchu B, Mochnick J, Coles A, Zhang Y, et al. (February 2015). "Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species". Biochemical and Biophysical Research Communications. 457 (4): 669–675. doi:10.1016/j.bbrc.2015.01.046. PMID 25615820.
  7. Blackburn EH, Epel ES, Lin J (December 2015). "Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection". Science. 350 (6265): 1193–1198. Bibcode:2015Sci...350.1193B. doi:10.1126/science.aab3389. PMID 26785477.
  8. Byun HO, Lee YK, Kim JM, Yoon G (October 2015). "From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes". BMB Reports. 48 (10): 549–558. doi:10.5483/bmbrep.2015.48.10.122. PMC 4911181. PMID 26129674.
  9. Young AR, Narita M (March 2009). "SASP reflects senescence". EMBO Reports. 10 (3): 228–230. doi:10.1038/embor.2009.22. PMC 2658552. PMID 19218920.
  10. Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, et al. (August 2012). "Glucocorticoids suppress selected components of the senescence-associated secretory phenotype". Aging Cell. 11 (4): 569–578. doi:10.1111/j.1474-9726.2012.00818.x. PMC 3387333. PMID 22404905.
  11. Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P (December 2015). "Simvastatin suppresses breast cancer cell proliferation induced by senescent cells". Scientific Reports. 5: 17895. Bibcode:2015NatSR...517895L. doi:10.1038/srep17895. PMC 4677323. PMID 26658759.
  12. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. (November 2015). "JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age". Proceedings of the National Academy of Sciences of the United States of America. 112 (46): E6301–E6310. Bibcode:2015PNAS..112E6301X. doi:10.1073/pnas.1515386112. PMC 4655580. PMID 26578790.
  13. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. (December 2015). "Targeting senescent cells enhances adipogenesis and metabolic function in old age". eLife. 4: e12997. doi:10.7554/eLife.12997. PMC 4758946. PMID 26687007.
  14. Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, et al. (April 2016). "Mitochondria are required for pro-ageing features of the senescent phenotype". The EMBO Journal. 35 (7): 724–742. doi:10.15252/embj.201592862. PMC 4818766. PMID 26848154. 60% of the SASP genes which are significantly different between proliferating and senescent were reversed upon mitochondrial depletion, whereas only 5% were exacerbated
  15. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. (June 2016). "Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors". Aging Cell. 15 (3): 428–435. doi:10.1111/acel.12445. PMC 4854923. PMID 26711051.
  16. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. (August 2015). "The Achilles' heel of senescent cells: from transcriptome to senolytic drugs". Aging Cell. 14 (4): 644–658. doi:10.1111/acel.12344. PMC 4531078. PMID 25754370.
  17. Soto-Gamez A, Quax WJ, Demaria M (July 2019). "Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions". Journal of Molecular Biology. 431 (15): 2629–2643. doi:10.1016/j.jmb.2019.05.036. PMID 31153901. S2CID 173993854.
  18. Khosla S, Farr JN, Tchkonia T, Kirkland JL (May 2020). "The role of cellular senescence in ageing and endocrine disease". Nature Reviews. Endocrinology. 16 (5): 263–275. doi:10.1038/s41574-020-0335-y. PMC 7227781. PMID 32161396.
  19. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. (September 2017). "Identification of HSP90 inhibitors as a novel class of senolytics". Nature Communications. 8 (1): 422. Bibcode:2017NatCo...8..422F. doi:10.1038/s41467-017-00314-z. PMC 5583353. PMID 28871086.
  20. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. (January 2015). "Reduced expression of MYC increases longevity and enhances healthspan". Cell. 160 (3): 477–488. doi:10.1016/j.cell.2014.12.016. PMC 4624921. PMID 25619689.

Further reading

This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.