Eutropoflavin
Clinical data | |
---|---|
ATC code |
|
Identifiers | |
IUPAC name
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
ChEMBL | |
Chemical and physical data | |
Formula | C17H15NO4 |
Molar mass | 297.310 g·mol−1 |
3D model (JSmol) | |
SMILES
| |
InChI
|
Eutropoflavin (4'-Dimethylamino-7,8-dihydroxyflavone) is a synthetic flavone and selective small-molecule agonist of TrkB, the main receptor of brain-derived neurotrophic factor (BDNF), which was derived from structural modification of tropoflavin (7,8-DHF).[1][2][3][4] Relative to tropoflavin, eutropoflavin possesses higher agonistic activity at TrkB, is significantly more potent than tropoflavin both in vitro and in vivo, and has a longer duration of action (peaking at 4 hours and "partially decaying" at 8~16 hours in rodents).[1][3] The compound has been found to produce neuroprotective, neurogenic, and antidepressant-like effects in animals.[1][3][4][5]
See also
- Tropomyosin receptor kinase B § Agonists
References
- 1 2 3 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, et al. (December 2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". Journal of Medicinal Chemistry. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605. PMID 21073191.
- ↑ Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, Ye K (October 2012). "Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression". Journal of Medicinal Chemistry. 55 (19): 8524–37. doi:10.1021/jm301099x. PMC 3491656. PMID 22984948.
- 1 2 3 Liu C, Chan CB, Ye K (2016). "7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders". Translational Neurodegeneration. 5 (1): 2. doi:10.1186/s40035-015-0048-7. PMC 4702337. PMID 26740873.
- 1 2 Zeng Y, Wang X, Wang Q, Liu S, Hu X, McClintock SM (November 2013). "Small molecules activating TrkB receptor for treating a variety of CNS disorders". CNS & Neurological Disorders Drug Targets. 12 (7): 1066–77. doi:10.2174/18715273113129990089. PMID 23844685.
- ↑ Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, et al. (June 2013). "Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease". Human Molecular Genetics. 22 (12): 2462–70. doi:10.1093/hmg/ddt098. PMC 3658168. PMID 23446639.
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.