دالة متباينة
في الرياضيات، الدالة المتباينة (بالإنجليزية: Injective function) هي دالة تبقى بها العناصر متباينة (متفاوتة): فبها لا تقترن العناصر المتباينية من مجالها بنفس العنصر من مجالها المقابل.[1][2][3] بمعنى أن كل عنصر من مجالها المقابل مقترن بعنصر من مجالها واحد على الأكثر.
تعريف
لتكن f دالة مجال تعريفها هو مجموعة A. الدالة f هي متباينة إذا وفقط إذا توفر لكل عنصرين a و b من A ما يلي:
- إذا كان (f(a) = f(b، فإن a = b؛ أي أن (f(a) = f(b تعني a = b. وبشكل مكافئ، إذا كان a ≠ b، فإن (f(a) ≠ f(b.
باستعمال رموز الرياضيات، يُحصل على ما يلي:
والتي تكافئ بشكل منطقي ما يلي:
مراجع
- قالب:Note autre projet
- "Unicode" (PDF)، مؤرشف من الأصل (PDF) في 23 مايو 2018، اطلع عليه بتاريخ 11 مايو 2013.
- Williams, Peter، "Proving Functions One-to-One"، مؤرشف من الأصل في 11 أكتوبر 2000.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.