دالة متعددة المتغيرات الحقيقية

في التحليل الرياضي، دالة ذات عدة متغيرات هي دالة نطاقها مجموعة جزئية من حيث n>1
.[1] حيث تمثل الدالة في فضاء ثلاثي الأبعاد بحيث يكون الإحداثي العمودي للنقطة هو قيمة الدالة عند العنصر الممثل بالاحداثين الأولين، وهذا التمثيل يسمى «السطح الممثل للدالة». مجموعة التعريف لدالة ذات n متغير، هي مجموعة مشتقة من و مدى هذه الدالة هي مجموعة مشتقة من بعض الدوال تكون معرفة لجميع الأعداد الحقيقية ، ولكن البعض الآخر تكون معرفة لمجموعة مشتقة من

n = 1
n = 2
n = 3
الدوال f(x1, x2, ..., xn) لـ n متغير، مرسومة كرسومات بيانية في الفضاء n + 1. المجالات هي المناطق n-الأبعاد الحمراء، والصور هي منحنيات n-الأبعاد ذات اللون الأرجواني.

تعريف السطح الممثل لدالة

لتكن حيث A مجموعة جزئية من ، السطح الممثل للدالة f هو مجموعة النقاط.

وبالمثل إذا كانت حيث A مجموعة جزئية من فإن مجموعة النقاط

تسمى التمثيل البياني للدالة.

انظر أيضا

مراجع

وصلات خارجية

  • بوابة تحليل رياضي
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.