3-Hydroxypropionate bicycle
The 3-hydroxypropionate bicycle, also known as the 3-hydroxypropionate pathway, is a process that allows some bacteria to generate 3-hydroxypropionate using carbon dioxide.[1] In this pathway CO2 is fixed (i.e. incorporated) by the action of two enzymes, acetyl-CoA carboxylase and propionyl-CoA carboxylase. These enzymes generate malonyl-CoA and (S)-methylmalonyl-CoA, respectively. Malonyl-CoA, in a series of reactions, is further split into acetyl-CoA and glyoxylate. Glyoxylate is incorporated into beta-methylmalyl-coA which is then split, again through a series of reactions, to release pyruvate as well as acetate, which is used to replenish the cycle.[2] This pathway has been demonstrated in Chloroflexus, a nonsulfur photosynthetic bacterium; however, other studies suggest that 3-hydroxypropionate bicycle is used by several chemotrophic archaea.[3][4]
See also
References
- Herter, Sylvia; Fuchs, Georg; Bacher, Adelbert; Eisenreich, Wolfgang (June 2002). "A Bicyclic Autotrophic CO2 Fixation Pathway in Chloroflexus aurantiacus". Journal of Biological Chemistry. 277 (23): 20277–20283. doi:10.1074/jbc.m201030200. ISSN 0021-9258.
- Zarzycki, Jan; Brecht, Volker; Müller, Michael; Fuchs, Georg (2009-12-15). "Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus". Proceedings of the National Academy of Sciences of the United States of America. 106 (50): 21317–21322. doi:10.1073/pnas.0908356106. ISSN 1091-6490. PMC 2795484. PMID 19955419.
- Tabita, F. Robert (2009-12-15). "The hydroxypropionate pathway of CO2 fixation: Fait accompli". Proceedings of the National Academy of Sciences. 106 (50): 21015–21016. Bibcode:2009PNAS..10621015T. doi:10.1073/pnas.0912486107. ISSN 0027-8424. PMC 2795556. PMID 19996176.
- Hügler, Michael; Sievert, Stefan M. (2011). "Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean". Annual Review of Marine Science. 3 (1): 261–289. Bibcode:2011ARMS....3..261H. doi:10.1146/annurev-marine-120709-142712. PMID 21329206.