4-Iodobenzoic acid

4-Iodobenzoic acid, or p-iodobenzoic acid, is an organic compound with the formula IC6H4COOH.[3]

4-Iodobenzoic acid
Names
Preferred IUPAC name
4-Iodobenzoic acid
Other names
p-Iodobenzoic acid
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.009.641
EC Number
  • 210-603-2
UNII
  • InChI=1S/C7H5IO2/c8-6-3-1-5(2-4-6)7(9)10/h1-4H,(H,9,10) checkY
    Key: GHICCUXQJBDNRN-UHFFFAOYSA-N checkY
  • C1=CC(=CC=C1C(=O)O)I
Properties
C7H5IO2
Molar mass 248.018 g/mol
Appearance white solid
Melting point 270–273 °C (518–523 °F; 543–546 K)[1]
Hazards
GHS labelling:[2]
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501
Related compounds
Related compounds
2-Iodobenzoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

Structure

4-iodobenzoic acid crystallization[4]

X-ray crystallography of 4-iodobenzoic acid has shown that it crystallizes in the solid state as hydrogen-bonded dimers which stack perpendicular to their aromatic rings. The iodine atoms of adjacent dimers are also oriented towards each other due to van der Waals forces.[4]

Preparation

4-Iodobenzoic acid may be prepared in the laboratory by the oxidation of p-iodotoluene with potassium permanganate.[5]

Reactions

The carboxylic acid functionality of 4-iodobenzoic acid undergoes Fischer–Speier esterification with methanol to form the ester methyl 4-iodobenzoate.[6]

See also

References

  1. "4-Iodobenzoic acid". Sigma Aldrich. Retrieved January 31, 2023.
  2. "4-Iodobenzoic acid". pubchem.ncbi.nlm.nih.gov.
  3. PubChem. "4-Iodobenzoic acid". PubChem. Retrieved 2023-01-21.
  4. Nygren, Cara L.; Wilson, Chick C.; Turner, John F. C. (2005). "On the Solid State Structure of 4-Iodobenzoic Acid". The Journal of Physical Chemistry A. 109 (11): 2586–2593. doi:10.1021/jp047189b.
  5. Varma, P. S.; Panickerp, P. B. (1928). "Influence of substitution on the oxidation of side chains in the benzene nucleus". Proc. 15th Indian Sci. Cong.
  6. Gadzikwa, Tendai; Zeng, Bi-Shun; Hupp, Joseph T.; Nguyen, SonBinh T. (2008). "Ligand-elaboration as a strategy for engendering structural diversity in porous metal–organic framework compounds". Chemical Communications (31): 3672–3674. doi:10.1039/B714160B.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.