Radeon 200 series
The Radeon 200 series is a series of graphics processors developed by AMD. These GPUs are manufactured on a 28 nm Gate-Last process through TSMC or Common Platform Alliance.[8]
Release date | October 8, 2013 |
---|---|
Codename |
|
Architecture | |
Transistors |
|
Cards | |
Entry-level |
|
Mid-range |
|
High-end |
|
Enthusiast |
|
API support | |
Direct3D |
|
OpenCL | OpenCL 2.1 (GCN version) |
OpenGL | OpenGL 4.5 (4.6 Windows 7+ and Adrenalin 18.4.1+)[2][3][4][5][6] |
Vulkan |
|
History | |
Predecessor | |
Successor | Radeon 300 series |
Support status | |
Unsupported |
Release
The Rx 200 series was announced on September 25, 2013, at the AMD GPU14 Tech Day event.[9] Non-disclosure agreements were lifted on October 15, except for the R9 290X, and pre-orders opened on October 3.[10]
Architecture
- Graphics Core Next 3 (Volcanic Islands) is found on the R9 285 (Tonga Pro) branded products.
- Graphics Core Next 2 (Sea Islands) is found on R7 260 (Bonaire), R7 260X (Bonaire XTX), R9 290 (Hawaii Pro), R9 290X (Hawaii XT), and R9 295X2 (Vesuvius) branded products.
- Graphics Core Next 1 (Southern Islands) is found on R9 270, 270X, 280, 280X, R7 240, 250, 250X, 265, and R5 240 branded products.
- TeraScale 2 (VLIW5) (Northern Islands or Evergreen) is found on R5 235X and below branded products.
- OpenGL 4.x compliance requires supporting FP64 shaders. These are implemented by emulation on some TeraScale (microarchitecture) GPUs.
- Vulkan 1.0 requires GCN-Architecture. Vulkan 1.1 requires GCN 2 or higher.[11]
Multi-monitor support
The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 Series and have been present in all products since.[12]
AMD TrueAudio
AMD TrueAudio was introduced with the AMD Radeon Rx 200 Series, but can only be found on the dies of GCN 2/3 products.
Video acceleration
AMD's SIP core for video acceleration, Unified Video Decoder and Video Coding Engine, are found on all GPUs and supported by AMD Catalyst and by the free and open-source graphics device driver.
Use in cryptocurrency mining
During 2014 the Radeon R9 200 series GPUs offered a very competitive price for usage in cryptocurrency mining. This led to limited supply and huge price increases of up to 164% over the MSRP in Q4 of 2013 and Q1 of 2014.[13][14] Since Q2 of 2018 availability of AMD GPUs as well as pricing has, in most cases, returned to normal.
CrossFire Compatibility
Because many of the products in the range are rebadged versions of Radeon HD products, they remain compatible with the original versions when used in CrossFire mode. For example, the Radeon HD 7770 and Radeon R7 250X both use the 'Cape Verde XT' chip so have identical specifications and will work in CrossFire mode. This provides a useful upgrade option for anyone who owns an existing Radeon HD card and has a CrossFire compatible motherboard.
Virtual super resolution support
Starting with the driver release candidate version v14.501-141112a-177751E, officially named as Catalyst Omega, AMD's driver release introduced VSR on the R9 285 and R9 290 series graphics cards. This feature allows users to run games with higher image quality by rendering frames at above native resolution. Each frame is then downsampled to native resolution. This process is an alternative to supersampling which is not supported by all games. Virtual super resolution is similar to Dynamic Super Resolution, a feature available on competing nVidia graphics cards, but trades flexibility for increased performance.[15][16] VSR can run at a resolution upwards of 2048 x 1536 at a 120 Hz refresh rate or 3840 x 2400 at 60 Hz.[17]
OpenCL (API)
OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. (or 1.2) and higher.[18] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.
Vulkan (API)
API Vulkan 1.0 is supported for all GCN architecture cards. Vulkan 1.2 requires GCN 2nd gen or higher with the Adrenalin 20.1 and Linux Mesa 20.0 drivers and newer.
Desktop models
Radeon R9 295X2
The Radeon R9 295X2 was released on April 21, 2014. It is a dual GPU card. Press samples were shipped in a metal case. It is the first reference card to utilize a closed looped liquid cooler.[19][20] At 11.5 teraflops of computing power, the R9 295X2 was the most powerful dual-gpu consumer-oriented card in the world, until it was succeeded by the Radeon Pro Duo on April 26, 2016, which is essentially a combination of two R9 Fury X (Fiji XT) GPUs on a single card.[19] The R9 295x2 has essentially two R9 290x (Hawaii XT) GPUs each with 4GB GDDR5 VRAM.[19]
Radeon R9 290X
The Radeon R9 290X, codename "Hawaii XT", was released on October 24, 2013 and features 2816 Stream Processors, 176 TMUs, 64 ROPs, 512-bit wide buses, 44 CUs (compute units) and 8 ACE units. The R9 290X had a launch price of $549.
Radeon R9 290
The Radeon R9 290 and R9 290X were announced on September 25, 2013.[21][22] The R9 290 is based on AMD's Hawaii Pro chip and R9 290X on Hawaii XT. R9 290 and R9 290X will support AMD TrueAudio, Mantle, Direct3D 11.2, and bridge-free Crossfire technology using XDMA. A limited "Battlefield 4 Edition" pre-order bundle of R9 290X that includes Battlefield 4 was available on October 3, 2013, with reported quantity being 8,000. The R9 290 had a launch price of $399.
Radeon R9 285
The Radeon R9 285 was announced on August 23, 2014 at AMD's 30 years of graphics celebration and released September 2, 2014. It was the first card to feature AMD's GCN 3 microarchitecture, in the form of a Tonga-series GPU.
Radeon R9 280X
Radeon R9 280X was announced on September 25, 2013. With a launch price of $299, it is based on the Tahiti XTL chip, being a slightly upgraded, rebranded Radeon HD 7970 GHz Edition.
Radeon R9 280
Radeon R9 280 was announced on March 4, 2014. With a launch MSRP set at $279, it is based on a rebranded Radeon HD 7950 with a slightly increased boost clock speed, from 925 MHz to 933 MHz.[23]
Radeon R9 270X
Radeon R9 270X was announced on September 25, 2013. With a launch price of $199 (2 GB) and $229 (4 GB), it is based on the Curaçao XT chip, which was formerly called Pitcairn.[24] It is speculated to be faster than a Radeon HD 7870 GHz edition. Radeon R9 270 has a launch price of $179.
Radeon R7 260X
Radeon R7 260X was announced on September 25, 2013. With a launch price of $139, it is based on the Bonaire XTX chip, a faster iteration of Bonaire XT that the Radeon HD 7790 is based on. It will have 2 GB of GDDR5 memory as standard and will also feature TrueAudio, on-chip audio DSP based on Tensilica HiFi EP architecture. The stock card features a boost clock of 1100 MHz. It has 2 GBs of GDDR5 memory with a 6.5 GHz memory clock over a 128-bit Interface. The 260X will draw around 115 W in typical use.[25][26]
Radeon R7 250
Radeon R7 250 was announced on September 25, 2013. It has a launch price of $89.[25] The card is based on the Oland core with 384 GCN cores. On February 10, 2014, AMD announced the R7 250X which is based on the Cape Verde GPU with 640 GCN cores and an MSRP of $99.[27]
Chipset table
Desktop models
Model (codename) |
Release Date & Price |
Architecture & Fab |
Transistors & Die Size |
Core | Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] | Processing power[lower-alpha 1][lower-alpha 4] (GFLOPS) |
Memory | TBP | Bus interface | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Config[lower-alpha 5] | Clock[lower-alpha 1] (MHz) | Texture (GT/s) | Pixel (GP/s) | Single | Double | Size (MiB) | Bus type & width |
Clock (MT/s) | Band- width (GB/s) | ||||||
Radeon R5 220[28] (Caicos Pro) |
December 21, 2013 OEM |
Terascale 2[lower-alpha 6] 40 nm |
370×106 67 mm2 |
80:8:4 | 625 650 |
5 | 2.5 | 200 | — | 1024 | DDR3 64-bit |
1066 | 8.53 | 18 W | PCIe 2.1 ×16 |
Radeon R5 230[29] (Caicos Pro) |
April 3, 2014[30] ? |
160:8:4 | 625 | 5 | 2.5 | 200 | — | 1024 2048 |
DDR3 64-bit |
1066 | 8.53 | 19 W[31] | |||
Radeon R5 235[28] (Caicos XT) |
December 21, 2013 OEM |
160:8:4 | 775 | 6.2 | 3.1 | 248 | — | 1024 | DDR3 64-bit |
1800 | 14.4 | 35 W[32] | |||
Radeon R5 235X[28] (Caicos XT) |
December 21, 2013 OEM |
160:8:4 | 875 | 7.0 | 3.5 | 280 | — | 1024 | DDR3 64-bit |
1800 | 14.4 | 18 W | |||
Radeon R5 240[28] (Oland) |
November 1, 2013[33] OEM |
GCN 1st gen 28 nm |
1040×106 90 mm2 |
384:24:8 | 730 780 |
14.6 | 5.84 | 560.6 599 |
29.2 | 1024 2048 |
DDR3 GDDR3 64-bit |
1800 2000 |
14.4 16.0 |
30 W | PCIe 3.0 ×8 |
Radeon R7 240[34] (Oland Pro) |
August 8, 2013 US $69 |
320:20:8 | 730 780 |
14.6 | 5.84 | 467.2 499.2 |
29.2 | 2048 4096 |
DDR3 GDDR5 128-bit |
1800 4500 |
28.8 72 |
30 W, <45 W (4 GB)[35] | |||
Radeon R7 250[34] (Oland XT) |
August 8, 2013 US $89 |
384:24:8 | 1000 (1050) |
24 | 8 | 768 806.4 |
48 | 1024 2048 |
DDR3 GDDR5 128-bit |
1800 4600 |
28.8 73.6 |
75 W | |||
Radeon R7 250E[36] (Cape Verde Pro) |
December 21, 2013 US $109 |
1500×106 123 mm2 |
512:32:16 | 800 | 25.6 | 12.8 | 819.2 | 51.2 | 1024 2048 |
GDDR5 128-bit |
4500 | 72 | 55 W | PCIe 3.0 ×16 | |
Radeon R7 250X[34] (Cape Verde XT) |
February 10, 2014 US $99 |
640:40:16 | 1000 | 40 | 16 | 1280 | 80 | 1024 2048 |
GDDR5 128-bit |
4500 | 72 | 95 W | |||
Radeon R7 260[34] (Bonaire) |
December 17, 2013 US $109 |
GCN 2nd gen 28 nm |
2080×106 160 mm2 |
768:48:16 | 1000 | 48 | 16 | 1536 | 96 | 1024 | GDDR5 128-bit |
6000 | 96 | 95 W | |
Radeon R7 260X[34] (Bonaire XTX) |
August 8, 2013 US $139 |
896:56:16 | 1100 | 61.6 | 17.6 | 1971.2 | 123.2 | 1024 2048 |
GDDR5 128-bit |
6500 | 104 | 115 W | |||
Radeon R7 265[34] (Pitcairn Pro) |
February 13, 2014 US $149 |
GCN 1st gen 28 nm |
2800×106 212 mm2 |
1024:64:32 | 900 925 |
57.6 | 28.8 | 1843.2 | 115.2 | 2048 | GDDR5 256-bit |
5600 | 179.2 | 150 W | |
Radeon R9 270[37] (Pitcairn XT) |
November 13, 2013 US $179 |
1280:80:32 | 900 925 |
72 | 28.8 | 2304 2368 |
144 148 |
2048 | GDDR5 256-bit |
5600 | 179.2 | 150 W | |||
Radeon R9 270X[37] (Pitcairn XT) |
August 8, 2013 US $199 |
1280:80:32 | 1000 1050 |
80 | 32 | 2560 2688 |
160 168 |
2048 4096 |
GDDR5 256-bit |
5600 | 179.2 | 180 W | |||
Radeon R9 280[37] (Tahiti Pro) |
March 4, 2014 US $249 |
4313×106 352 mm2 |
1792:112:32 | 827 933 |
92.6 | 26.5 | 2964 3343.9 |
741 836 |
3072 | GDDR5 384-bit |
5000 | 240 | 250 W | ||
Radeon R9 280X[37] (Tahiti XTL)[38] |
August 8, 2013 US $299 |
2048:128:32 | 850 1000 |
109–128 | 27.2–32 | 3481.6 4096 |
870.4 1024 |
3072 | GDDR5 384-bit |
6000 | 288 | 250 W | |||
Radeon R9 285[37] (Tonga Pro) |
September 2, 2014 US $249 |
GCN 3rd gen 28 nm |
5000×106 359 mm2 [39] |
1792:112:32 | 918 | 102.8 | 29.4 | 3290 | 206.6[40] | 2048 | GDDR5 256-bit |
5500 | 176[lower-alpha 7] | 190 W | |
Radeon R9 285X (Tonga XT) |
Unreleased [42] | 2048:128:32 | 1002 | 128.3 | 32.1 | 4104 | 256.5 | 3072 | GDDR5 384-bit |
5500 | 264 | 200 W | |||
Radeon R9 290[37] (Hawaii Pro) |
November 5, 2013 US $399 |
GCN 2nd gen 28 nm |
6200×106 438 mm2 [43] |
2560:160:64 | up to 947[lower-alpha 8] | 151.52 | 60.608 | 4848.6 | 606.1 | 4096 | GDDR5 512-bit |
5000 | 320 | 250 W[45] | |
Radeon R9 290X[37] (Hawaii XT) |
October 24, 2013 November 6, 2014[46] US $549 |
2816:176:64 | 1000[lower-alpha 8] | 176 | 64 | 5632 | 704 | 4096 8192 |
GDDR5 512-bit |
5000 | 320 | 250 W[45] | |||
Radeon R9 295X2[37][47] (Vesuvius) |
April 8, 2014 US $1499 |
2× 6200×106 2× 438 mm2 |
2× 2816:176:64 | 1018 | 358.33 | 130.3 | 11466.75 | 1433.34 | 2× 4096 | GDDR5 512-bit |
5000 | 2× 320 | 500 W | ||
Model (codename) |
Release Date & Price |
Architecture & Fab |
Transistors & Die Size |
Config[lower-alpha 5] | Clock[lower-alpha 1] (MHz) | Texture (GT/s) | Pixel (GP/s) | Single | Double | Size (MiB) | Bus type & width |
Clock (MT/s) | Band- width (GB/s) |
TBP | Bus interface |
Core | Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] | Processing power[lower-alpha 1][lower-alpha 4] (GFLOPS) |
Memory |
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
- Unified Shaders : Texture Mapping Units : Render Output Units
- Lacks hardware video encoder
- The R9 285 utilizes loss-less colour compression which can increase effective memory performance (relative to GCN 1st gen and 2nd gen cards) in certain situations.[39][41]
- Base clock of R9 290 and R9 290X will maintain at 947 MHz and 1000 MHz before reaching 95 °C, respectively.[44]
Mobile models
Model (Codename) |
Launch | Architecture (Fab) |
Core | Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] | Processing power[lower-alpha 1][lower-alpha 4] (GFLOPS) |
Memory | TDP | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Config[lower-alpha 5] | Clock[lower-alpha 1] (MHz) | Texture (GT/s) | Pixel (GP/s) | Size (GiB) | Bus type & width |
Clock (MT/s) | Band- width (GB/s) | |||||
Radeon R5 M230 (Jet Pro) |
January 2014 | GCN 1st gen (28 nm) |
320:20:8:5 | 780 855 |
3.4 | 17.1 | 547 | 2 4 |
DDR3 64-bit |
2000 | 16 | Unknown |
Radeon R5 M255 (Jet Pro) |
June 2014 | 320:20:8:5 | 925 940 |
7.5 | 18.8 | 601 | 2 4 |
DDR3 64-bit |
2000 | 16 | Unknown | |
Radeon R7 M260 (Topaz) |
June 2014 | 384:24:8:6 | 620 980 |
5.7 7.8 |
17.2 23.5 |
549.1 752.6 |
2 4 |
DDR3 64-bit |
1800 2000 |
14.4 16 |
Unknown | |
Radeon R7 M260X (Opal) |
June 2014 | 384:24:8:6 | 620 715 |
5.7 | 17.2 | 549 | 2 4 |
GDDR5 128-bit |
4000 | 64 | Unknown | |
Radeon R7 M265 (Opal XT) |
May 2014 | 384:24:8:6 | 725 825 |
6.6 | 19.8 | 633.6 | 2 4 |
DDR3 64-bit |
1800 2000 |
14.4 16 |
Unknown | |
Radeon R9 M265X (Venus Pro) |
May 2014 | 640:40:16:10 | 575 625 |
10 | 25 | 800 | 2 4 |
GDDR5 128-bit |
4500 | 72 | Unknown | |
Radeon R9 M270X (Venus XT) |
May 2014 | 640:40:16:10 | 725 775 |
12.4 | 31 | 992 | 2 4 |
GDDR5 128-bit |
4500 | 72 | Unknown | |
Radeon R9 M275X (Venus XTX) |
May 2014 | 640:40:16:10 | 900 925 |
14.8 | 37 | 1184 | 2 4 |
GDDR5 128-bit |
4500 | 72 | 50 W | |
Radeon R9 M280X (Saturn XT) |
February 2015 | GCN 2nd gen (28 nm) |
896:56:16:14 | 1000 1100 |
17.6 | 61.6 | 1792 | 2 4 |
GDDR5 128-bit |
6000 | 96 | ~75 W |
Radeon R9 M290X (Neptune XT) |
May 2014 | GCN 1st gen (28 nm) |
1280:80:32:20 | 850 900 |
28.8 | 72 | 2176 2304 |
4 | GDDR5 256-bit |
4800 | 153.6 | 100 W |
Radeon R9 M295X (Amethyst XT) |
November 2014 | GCN 3rd gen (28 nm) |
2048:128:32:32 | 750 800 |
25.6 | 102.4 | 3276.8 | 4 | GDDR5 256-bit |
5500 | 176 | 250 W |
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
- Unified Shaders : Texture Mapping Units : Render Output Units
Radeon Feature Matrix
The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).
Name of GPU series | Wonder | Mach | 3D Rage | Rage Pro | Rage 128 | R100 | R200 | R300 | R400 | R500 | R600 | RV670 | R700 | Evergreen | Northern Islands |
Southern Islands |
Sea Islands |
Volcanic Islands |
Arctic Islands/Polaris |
Vega | Navi 1x | Navi 2x | Navi 3x | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Released | 1986 | 1991 | Apr 1996 |
Mar 1997 |
Aug 1998 |
Apr 2000 |
Aug 2001 |
Sep 2002 |
May 2004 |
Oct 2005 |
May 2007 |
Nov 2007 |
Jun 2008 |
Sep 2009 |
Oct 2010 |
Jan 2012 |
Sep 2013 |
Jun 2015 |
Jun 2016, Apr 2017, Aug 2019 | Jun 2017, Feb 2019 | Jul 2019 |
Nov 2020 |
Dec 2022 | |||
Marketing Name | Wonder | Mach | 3D Rage |
Rage Pro |
Rage 128 |
Radeon 7000 |
Radeon 8000 |
Radeon 9000 |
Radeon X700/X800 |
Radeon X1000 |
Radeon HD 2000 |
Radeon HD 3000 |
Radeon HD 4000 |
Radeon HD 5000 |
Radeon HD 6000 |
Radeon HD 7000 |
Radeon 200 |
Radeon 300 |
Radeon 400/500/600 |
Radeon RX Vega, Radeon VII |
Radeon RX 5000 |
Radeon RX 6000 |
Radeon RX 7000 | |||
AMD support | ||||||||||||||||||||||||||
Kind | 2D | 3D | ||||||||||||||||||||||||
Instruction set architecture | Not publicly known | TeraScale instruction set | GCN instruction set | RDNA instruction set | ||||||||||||||||||||||
Microarchitecture | TeraScale 1 (VLIW) |
TeraScale 2 (VLIW5) |
|
GCN 1st gen |
GCN 2nd gen |
GCN 3rd gen |
GCN 4th gen |
GCN 5th gen |
RDNA | RDNA 2 | RDNA 3 | |||||||||||||||
Type | Fixed pipeline[lower-alpha 1] | Programmable pixel & vertex pipelines | Unified shader model | |||||||||||||||||||||||
Direct3D | — | 5.0 | 6.0 | 7.0 | 8.1 | 9.0 11 (9_2) |
9.0b 11 (9_2) |
9.0c 11 (9_3) |
10.0 11 (10_0) |
10.1 11 (10_1) |
11 (11_0) | 11 (11_1) 12 (11_1) |
11 (12_0) 12 (12_0) |
11 (12_1) 12 (12_1) |
11 (12_1) 12 (12_2) | |||||||||||
Shader model | — | 1.4 | 2.0+ | 2.0b | 3.0 | 4.0 | 4.1 | 5.0 | 5.1 | 5.1 6.5 |
6.7 | |||||||||||||||
OpenGL | — | 1.1 | 1.2 | 1.3 | 2.1[lower-alpha 2][50] | 3.3 | 4.5 (on Linux: 4.5 (Mesa 3D 21.0))[51][52][53][lower-alpha 3] | 4.6 (on Linux: 4.6 (Mesa 3D 20.0)) | ||||||||||||||||||
Vulkan | — | 1.0 (Win 7+ or Mesa 17+) |
1.2 (Adrenalin 20.1.2, Linux Mesa 3D 20.0) 1.3 (GCN 4 and above (with Adrenalin 22.1.2, Mesa 22.0)) |
1.3 | ||||||||||||||||||||||
OpenCL | — | Close to Metal | 1.1 (no Mesa 3D support) | 1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa 3D, 1.2+ on GCN 1.Gen) | 2.0+ (Adrenalin driver on Win7+) (on Linux ROCM, Linux Mesa 3D 1.2+ (no Image support in clover, but in rustiCL with Mesa 3D, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+ |
2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa 3D rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip)) [54] [55][56] | ||||||||||||||||||||
HSA / ROCm | — | ? | ||||||||||||||||||||||||
Video decoding ASIC | — | Avivo/UVD | UVD+ | UVD 2 | UVD 2.2 | UVD 3 | UVD 4 | UVD 4.2 | UVD 5.0 or 6.0 | UVD 6.3 | UVD 7 [57][lower-alpha 4] | VCN 2.0 [57][lower-alpha 4] | VCN 3.0 [58] | VCN 4.0 | ||||||||||||
Video encoding ASIC | — | VCE 1.0 | VCE 2.0 | VCE 3.0 or 3.1 | VCE 3.4 | VCE 4.0 [57][lower-alpha 4] | ||||||||||||||||||||
Fluid Motion [lower-alpha 5] | ? | |||||||||||||||||||||||||
Power saving | ? | PowerPlay | PowerTune | PowerTune & ZeroCore Power | ? | |||||||||||||||||||||
TrueAudio | — | Via dedicated DSP | Via shaders | |||||||||||||||||||||||
FreeSync | — | 1 2 | ||||||||||||||||||||||||
HDCP[lower-alpha 6] | ? | 1.4 | 2.2 | 2.3 [59] | ||||||||||||||||||||||
PlayReady[lower-alpha 6] | — | 3.0 | 3.0 | |||||||||||||||||||||||
Supported displays[lower-alpha 7] | 1–2 | 2 | 2–6 | ? | ||||||||||||||||||||||
Max. resolution | ? | 2–6 × 2560×1600 |
2–6 × 4096×2160 @ 30 Hz |
2–6 × 5120×2880 @ 60 Hz |
3 × 7680×4320 @ 60 Hz [60] |
7680×4320 @ 60 Hz PowerColor |
7680x4320
@165 HZ | |||||||||||||||||||
/drm/radeon [lower-alpha 8] |
— | |||||||||||||||||||||||||
/drm/amdgpu [lower-alpha 8] |
— | Experimental [61] |
- The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
- R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
- OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
- The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
- Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
- To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
- More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
- DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.
Graphics device drivers
AMD's proprietary graphics device driver "Catalyst"
AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating system are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.
AMD Catalyst supports of course all features advertised for the Radeon brand.
Free and open-source graphics device driver "Radeon"
The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:
- Linux kernel component DRM
- Linux kernel component KMS driver: basically the device driver for the display controller
- user-space component libDRM
- user-space component in Mesa 3D;
- a special and distinct 2D graphics device driver for X.Org Server, which if finally about to be replaced by Glamor
The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs.[5] Unlike the nouveau project for Nvidia graphics cards, the open-source "Radeon" drivers are not reverse engineered, but based on documentation released by AMD.[62]
References
- "AMD Catalyst 15.7.1 Driver for Windows® Release Notes". AMD. Retrieved April 20, 2018.
- "AMD Radeon Software Crimson Edition 16.3 Release Notes". AMD. Retrieved April 20, 2018.
- "AMDGPU-PRO Driver for Linux Release Notes". 2016. Archived from the original on December 11, 2016. Retrieved April 23, 2018.
- "Mesamatrix". mesamatrix.net. Retrieved April 22, 2018.
- "RadeonFeature". X.Org Foundation. Retrieved April 20, 2018.
- "AMD Adrenalin 18.4.1 Graphics Driver Released (OpenGL 4.6, Vulkan 1.1.70) | Geeks3D". May 2018.
- "AMD Open Source Driver for Vulkan". GPUOpen. Retrieved April 20, 2018.
- "AMD Launches Next Generation Volcanic Islands (VI) GPUs in 2014 - Successor to Sea Islands". WCCFtech. September 20, 2012.
- Ryan Smith. "AMD Announces Next Generation Radeon R7 and R9 Video Cards". anandtech.com.
- Sebastian Pop (September 30, 2013). "Launch Date Revealed for AMD Radeon R9 290X Hawaii Graphics Card". softpedia.
- "The Khronos Group". June 13, 2022.
- "AMD Eyefinity: FAQ". AMD. May 17, 2011. Retrieved July 2, 2014.
- Ryan Smith. "Radeon R9 290X Retail Prices Hit $900". anandtech.com.
- "AMD graphics card pricing skyrockets due to cryptocurrency mining, could kill AMD's gaming efforts". ExtremeTech.
- Smith, Ryan. "The AMD Radeon R9 Fury X Review". Anandtech. Purch. p. 8. Retrieved August 19, 2015.
- Kowaliski, Cyril (December 9, 2014). "Catalyst Omega driver adds more than 20 features, 400 bug fixes". TechReport.com. Retrieved May 31, 2017.
- "AMD's Virtual Super Resolution Explained". Levvvel. Retrieved December 23, 2019.
- "The Khronos Group". June 13, 2022.
- AMD Radeon R9 Series Graphics Archived April 14, 2014, at the Wayback Machine
- Ryan Smith. "Meet the Radeon R9 295X2: Cooling & Power Delivery - The AMD Radeon R9 295X2 Review". anandtech.com.
- "What to expect from GPU14 event in Hawaii". September 25, 2013. Retrieved September 25, 2013.
- "AMD GPU Lineup Announced: R9 and R7 Series". pcper.com. September 25, 2013.
- Ryan Smith. "AMD Announces Radeon R9 280: Radeon HD 7950 w/Boost Returns". anandtech.com.
- Woligroski, Don. "AMD Radeon R9 270 Review: Replacing The Radeon HD 7800s". TomsHardware.com. Retrieved November 12, 2013.
- "AMD Releases R7 Series Graphics Cards With AMD Radeon R7 240, AMD Radeon R7 250 and AMD Radeon R7 260X GPUs". Advanced Micro Devices. Retrieved November 29, 2013.
- Ung, Gordon Mah (October 8, 2013). "Everything You Wanted to Know About AMD's New TrueAudio Technology". maximumpc. Archived from the original on July 11, 2014. Retrieved October 25, 2013.
- Ryan Smith. "AMD Announces Radeon R7 250X; Shipping Today". anandtech.com.
- "Radeon R5 Series Graphics Cards | OEM | AMD". www.amd.com. Retrieved March 13, 2017.
- "Radeon R5 Series Graphics Cards | AMD". www.amd.com. Retrieved February 19, 2017.
- btarunr (April 3, 2014). "AMD Launches Radeon R5 230 in the Retail Channel, Gigabyte Outs its Offering". TechPowerUp. Retrieved April 14, 2014.
- Wiles, Debbie (April 4, 2014). "AMD Launches Radeon R5 230 for Retail Market". CPU-World.com. Retrieved April 14, 2014.
- "AMD Radeon R5 235 OEM". TechPowerUp. Retrieved July 10, 2015.
- "AMD Radeon R5 240 OEM". TechPowerUp. Retrieved January 30, 2016.
- "Radeon R7 Series Graphics Cards | AMD". www.amd.com. Retrieved February 19, 2017.
- "AMD Radeon R7 250E". TechPowerUp. Retrieved January 5, 2016.
- "Radeon R9 Series Graphics Cards | AMD". www.amd.com. Retrieved February 19, 2017.
- Mujtaba, Hassan (October 26, 2013). "AMD Preparing Tahiti XTL Revision of Radeon R9 280X Graphic Card for November Release". WCCFtech.com. Retrieved October 27, 2013.
- Sandhu, Tarinder (September 2, 2014). "Review: Sapphire Radeon R9 285 Dual-X OC (28nm Tonga)". Hexus. Retrieved September 11, 2014.
- Smith, Ryan (September 10, 2014). "AMD Radeon R9 285 Review: Feat. Sapphire R9 285 Dual-X OC". AnandTech. Purch Group. p. 17. Retrieved September 11, 2014.
- Hruska, Joel (September 2, 2014). "AMD Radeon R9 285 review: The GCN 3rd gen Torpedo that Takes out Nvidia's GTX 760". ExtremeTech. Ziff Davis. Retrieved September 11, 2014.
- "AMD Radeon R9 285X spotted". Retrieved January 10, 2019.
- Smith, Ryan (October 24, 2013). "The AMD Radeon R9 290X Review". AnandTech. Purch Group. Retrieved October 24, 2013.
- Angelini, Chris (November 5, 2013). "AMD Radeon R9 290 Review: Fast and $400, But is it Consistent?". Tom's Hardware. Purch Group. Retrieved November 6, 2013.
- Moammer, Khalid (June 21, 2015). "AMD R9 Nano Performance Indirectly Revealed – More Compute Power than a Titan X". WCCFtech.com. Retrieved July 25, 2015.
- Gareth, Halfacree (November 6, 2014). "AMD board partners launch R9 290X 8GB models". bit-tech.net. Retrieved June 15, 2018.
- Shilov, Anton (April 4, 2014). "AMD Radeon R9 295 X2: Final Specs Out, Card may not Fit into All PCs". KitGuru. Korona Solutions. Retrieved April 6, 2014.
- "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022.
New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
- "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
- "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
- "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved April 20, 2018.
- "Mesamatrix". mesamatrix.net. Retrieved April 22, 2018.
- "RadeonFeature". X.Org Foundation. Retrieved April 20, 2018.
- "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
- "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. August 3, 2023. Retrieved September 4, 2023.
- "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved September 4, 2023.
- Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
- Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
- Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
- "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
- Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved December 7, 2016.
- "AMD Developer Guides". Archived from the original on July 16, 2013. Retrieved July 14, 2014.