Abel equation

The Abel equation, named after Niels Henrik Abel, is a type of functional equation of the form

or

.

The forms are equivalent when α is invertible. h or α control the iteration of f.

Equivalence

The second equation can be written

Taking x = α−1(y), the equation can be written

For a known function f(x) , a problem is to solve the functional equation for the function α−1h, possibly satisfying additional requirements, such as α−1(0) = 1.

The change of variables sα(x) = Ψ(x), for a real parameter s, brings Abel's equation into the celebrated Schröder's equation, Ψ(f(x)) = s Ψ(x) .

The further change F(x) = exp(sα(x)) into Böttcher's equation, F(f(x)) = F(x)s.

The Abel equation is a special case of (and easily generalizes to) the translation equation,[1]

e.g., for ,

.     (Observe ω(x,0) = x.)

The Abel function α(x) further provides the canonical coordinate for Lie advective flows (one parameter Lie groups).

History

Initially, the equation in the more general form [2] [3] was reported. Even in the case of a single variable, the equation is non-trivial, and admits special analysis.[4][5][6]

In the case of a linear transfer function, the solution is expressible compactly.[7]

Special cases

The equation of tetration is a special case of Abel's equation, with f = exp.

In the case of an integer argument, the equation encodes a recurrent procedure, e.g.,

and so on,

Solutions

The Abel equation has at least one solution on if and only if for all and all , , where , is the function f iterated n times.[8]

Analytic solutions (Fatou coordinates) can be approximated by asymptotic expansion of a function defined by power series in the sectors around a parabolic fixed point.[9] The analytic solution is unique up to a constant.[10]

See also

References

  1. Aczél, János, (1966): Lectures on Functional Equations and Their Applications, Academic Press, reprinted by Dover Publications, ISBN 0486445232 .
  2. Abel, N.H. (1826). "Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, ..." Journal für die reine und angewandte Mathematik. 1: 11–15.
  3. A. R. Schweitzer (1912). "Theorems on functional equations". Bull. Amer. Math. Soc. 19 (2): 51–106. doi:10.1090/S0002-9904-1912-02281-4.
  4. Korkine, A (1882). "Sur un problème d'interpolation", Bull Sci Math & Astron 6(1) 228—242. online
  5. G. Belitskii; Yu. Lubish (1999). "The real-analytic solutions of the Abel functional equations" (PDF). Studia Mathematica. 134 (2): 135–141.
  6. Jitka Laitochová (2007). "Group iteration for Abel's functional equation". Nonlinear Analysis: Hybrid Systems. 1 (1): 95–102. doi:10.1016/j.nahs.2006.04.002.
  7. G. Belitskii; Yu. Lubish (1998). "The Abel equation and total solvability of linear functional equations" (PDF). Studia Mathematica. 127: 81–89.
  8. R. Tambs Lyche,Sur l'équation fonctionnelle d'Abel, University of Trondlyim, Norvege
  9. Dudko, Artem (2012). Dynamics of holomorphic maps: Resurgence of Fatou coordinates, and Poly-time computability of Julia sets Ph.D. Thesis
  10. Classifications of parabolic germs and fractal properties of orbits by Maja Resman, University of Zagreb, Croatia
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.