Ancient East Eurasians

The term Ancient East Eurasian, alternatively also known as East Eurasian or Eastern Eurasian, is used in population genomics to describe the genetic ancestry and phylogenetic relationship of diverse populations primarily living in the Asia-Pacific region, belonging to the "Eastern Eurasian clade" of human genetic diversity,[1][2][3][4][5] and which can be associated with the Initial Upper Paleolithic (IUP) wave, following the Out of Africa migration (>60kya).[4]

Dispersal

Repetitive expansions into Eurasia from a population Hub OoA.

Modern humans of the Initial Upper Paleolithic wave (IUP) are suggested to have expanded from a population hub through a star-like expansion pattern (>45kya), and are linked to the "East Eurasian" lineage, broadly ancestral to modern populations in Eastern Eurasia, Oceania, and the Americas, notably East Asians, Southeast Asians, Indigenous Siberians, Aboriginal Australians, Pacific Islanders, and partly Indigenous Americans, South Asians and Central Asians. While Upper Paleolithic populations represented by specimens found in Central Asia and Europe, such as the Ust'-Ishim man, Bacho Kiro or Oase 2, are inferred to have used inland routes, the ancestors of all living East Eurasian populations are inferred to have used a Southern dispersal route through South Asia, where they subsequently diverged rapidly.[6][7][8]

Inferred model for the phylogenetic substructure of Eastern Eurasian populations.

Lineages

Major East Eurasian ancestry lineages which contributed to modern human populations include the following:[7]

  • Australasian lineage — refers to an ancestral population that primarily contributed to human populations in a region consisting of Australia, Papua, New Zealand, neighboring islands in the South Pacific Ocean and parts of the Philippines. Represented by present-day Australasians, e.g. Papuans and Aboriginal Australians, as well as the Philippine Negritos.
  • Ancient Ancestral South Indian lineage — refers to an ancestral population that primarily contributed to Indigenous South Asians. Partially represented by 5,000 – 1,500 year old Indus Periphery individuals as well as modern South Asians. Highest presence among tribal groups of southern India like the Paniya and Irula. The lineage is occasionally represented by the distantly related Andamanese peoples, serving as an imperfect proxy.[9]
  • East and Southeast Asian lineage — refers to an ancestral population that primarily contributed to humans living in East and Southeast Asia, much of Remote Oceania, as well as Siberia and the Americas. Represented by ancient Tianyuan and Hoabinhian specimens and present-day East and Southeast Asians.
Estimated ancestry components among selected modern populations per Changmai et al. (2022).[10]

The Australasian, Ancient Ancestral South Indian, and East and Southeast Asian lineages display a closer genetic relationship to each other than to any non-Asian lineages, and together represent the main branches of Asian-related ancestry.[7] The Australasian lineage however received higher archaic admixture in Oceania, and may also harbor some small amounts of "xOoA" admixture from an earlier human dispersal, which did not contribute to any other human population. Alternatively, Australasians may be described as nearly equally admixture between a "Basal East Asian" source (represented by Tianyuan) and a deeper East Eurasian lineage not sampled yet.[6][1][7]:11

Traces of an unsampled deeply diverged East Eurasian lineage can be observed in the genome of ancient and modern inhabitants of the Tibetan Plateau. While they mostly derive their ancestry from a northern East Asian source (specifically Yellow River farmers), a minor, but significant contribution stems from a deeply diverged East Eurasian local "Ghost population" that was distinct from other deeply diverged lineages such as Ust'Ishim, Hoabinhian/Onge or Tianyuan, representing the local Paleolithic population of the Tibetan Plateau.[11][12]

Deeper East Eurasian lineages have been associated with the Ust'-Ishim man from Siberia, and the Oase and Bacho Kiro cave specimens in southeastern Europe, and represent early inland migrations, deeply diverged from all other East Eurasian populations. These deep East Eurasian populations did not contribute to later Eurasian populations, except small contributions to the Goyet Caves specimen. The exact substructure and relationship between these deeper East Eurasian lineages is not well resolved yet.[6][13]

See also

References

  1. Lipson, Mark; Reich, David (2017). "A working model of the deep relationships of diverse modern human genetic lineages outside of Africa". Molecular Biology and Evolution. 34 (4): 889–902. doi:10.1093/molbev/msw293. ISSN 0737-4038. PMC 5400393. PMID 28074030.
  2. Skoglund, Pontus; Mathieson, Iain (2018-08-31). "Ancient Genomics of Modern Humans: The First Decade". Annual Review of Genomics and Human Genetics. 19 (1): 381–404. doi:10.1146/annurev-genom-083117-021749. ISSN 1527-8204. PMID 29709204. S2CID 19933330.
  3. Zhang, Ming; Fu, Qiaomei (2020-06-01). "Human evolutionary history in Eastern Eurasia using insights from ancient DNA". Current Opinion in Genetics & Development. Genetics of Human Origin. 62: 78–84. doi:10.1016/j.gde.2020.06.009. ISSN 0959-437X. PMID 32688244. S2CID 220671047.
  4. Vallini, Leonardo; Pagani, Luca (2022). "The future of the Eurasian past: highlighting plotholes and pillars of human population movements in the Late Pleistocene". Journal of Anthropological Sciences. 100 (100): 231–241. doi:10.4436/JASS.10013. ISSN 1827-4765. PMID 36565457.
  5. Nägele, Kathrin; Rivollat, Maite; Yu, He; Wang, Ke (2022). "Ancient genomic research - From broad strokes to nuanced reconstructions of the past". Journal of Anthropological Sciences. 100 (100): 193–230. doi:10.4436/jass.10017. PMID 36576953.
  6. Vallini et al. 2022 (2022-07-04). "Genetics and Material Culture Support Repeated Expansions into Paleolithic Eurasia from a Population Hub Out of Africa". Retrieved 2023-04-16.
  7. Yang, Melinda A. (2022-01-06). "A genetic history of migration, diversification, and admixture in Asia". Human Population Genetics and Genomics. 2 (1): 1–32. doi:10.47248/hpgg2202010001. ISSN 2770-5005.
  8. Sato, Takehiro; Adachi, Noboru; Kimura, Ryosuke; Hosomichi, Kazuyoshi; Yoneda, Minoru; Oota, Hiroki; Tajima, Atsushi; Toyoda, Atsushi; Kanzawa-Kiriyama, Hideaki; Matsumae, Hiromi; Koganebuchi, Kae (2021-09-01). "Whole-Genome Sequencing of a 900-Year-Old Human Skeleton Supports Two Past Migration Events from the Russian Far East to Northern Japan". Genome Biology and Evolution. 13 (9): evab192. doi:10.1093/gbe/evab192. ISSN 1759-6653. PMC 8449830. PMID 34410389.
  9. Yelmen, Burak; Mondal, Mayukh; Marnetto, Davide; Pathak, Ajai K; Montinaro, Francesco; Gallego Romero, Irene; Kivisild, Toomas; Metspalu, Mait; Pagani, Luca (2019-04-05). "Ancestry-Specific Analyses Reveal Differential Demographic Histories and Opposite Selective Pressures in Modern South Asian Populations". Molecular Biology and Evolution. 36 (8): 1628–1642. doi:10.1093/molbev/msz037. ISSN 0737-4038. PMC 6657728. PMID 30952160.
  10. Changmai, Piya; Pinhasi, Ron; Pietrusewsky, Michael; Stark, Miriam T.; Ikehara-Quebral, Rona Michi; Reich, David; Flegontov, Pavel (2022-12-29). "Ancient DNA from Protohistoric Period Cambodia indicates that South Asians admixed with local populations as early as 1st–3rd centuries CE". Scientific Reports. 12 (1): 22507. Bibcode:2022NatSR..1222507C. doi:10.1038/s41598-022-26799-3. ISSN 2045-2322. PMC 9800559. PMID 36581666.
  11. Liu, Chi-Chun; Witonsky, David; Gosling, Anna; Lee, Ju Hyeon; Ringbauer, Harald; Hagan, Richard; Patel, Nisha; Stahl, Raphaela; Novembre, John; Aldenderfer, Mark; Warinner, Christina; Di Rienzo, Anna; Jeong, Choongwon (2022-03-08). "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors". Nature Communications. 13 (1): 1203. Bibcode:2022NatCo..13.1203L. doi:10.1038/s41467-022-28827-2. ISSN 2041-1723. PMC 8904508. PMID 35260549. our results reject previously suggested sources of gene flow into the Tibetan lineage13,35,36, including deeply branching Eastern Eurasian lineages, such as the 45,000-year-old Ust'-Ishim individual from southern Siberia, the 40,000-year-old Tianyuan individual from northern China, and Hoabinhian/Onge-related lineages in southeast Asia (Supplementary Fig. 10), suggesting instead that it represents yet another unsampled lineage within early Eurasian genetic diversity. This deep Eurasian lineage is likely to represent the Paleolithic genetic substratum of the Plateau populations.
  12. Wang, Hongru; Yang, Melinda A.; Wangdue, Shargan; Lu, Hongliang; Chen, Honghai; Li, Linhui; Dong, Guanghui; Tsring, Tinley; Yuan, Haibing; He, Wei; Ding, Manyu; Wu, Xiaohong; Li, Shuai; Tashi, Norbu; Yang, Tsho (2023-03-15). "Human genetic history on the Tibetan Plateau in the past 5100 years". Science Advances. 9 (11): eadd5582. Bibcode:2023SciA....9D5582W. doi:10.1126/sciadv.add5582. ISSN 2375-2548. PMC 10022901. PMID 36930720.
  13. Vallini, Pagani, Leonardo, Luca (December 2022). "The future of the Eurasian past: highlighting plotholes and pillars of human population movements in the Late Pleistocene". Journal of Anthropological Sciences = Rivista di Antropologia : Jass. 100 (100): 231–241. doi:10.4436/JASS.10013. PMID 36565457.{{cite journal}}: CS1 maint: multiple names: authors list (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.