Azzedine Bousseksou

Azzedine Bousseksou (born 2 December 1964) is a Franco Algerian physical chemist.

Career

Azzedine Bousseksou attended high school in Algiers, where he received a diploma in Material Physics from the Université de Bab Ezzouar.[1] He also received a DEA in Materials Science from the University of Nantes in 1988 and then obtained a PhD in Materials Science from the Pierre and Marie Curie University in Paris in 1992,[1] completing his doctoral internship at the Inorganic Chemistry Laboratory of Johannes Gutenberg University of Mainz .[1]

Bousseksou began his career at the CNRS Coordination Chemistry Laboratory in Toulouse as a research fellow in 1993.[1][2] In January 2003, while in charge of Research at the LCC-CNRS Toulouse, he created and directed the scientific team "Switchable Molecular Materials".[3] At the same time, between 2005 and 2009, he directed the GDR Magnétisme et Commutation Moléculaires[4] and co-coordinated the GDRI France-Japan on multifunctional molecular materials between 2006-2010. Between 2011 and 2013, he was Deputy Director of the LCC-CNRS Toulouse and has been Director since 2013. Azzedine Bousseksou was a member of the CNRS national committee for the evaluation of researchers and research laboratories over the periods 2000 to 2004 and 2010 to 2015 and has coordinated and/or led several European, national, and regional projects. He has been a member of the European Network of Excellence on Molecular Magnetism, REX MAGMANET[5] and is a member of the European Institute on Molecular Magnetism (EIMM).

He and his team developed three complementary conceptual approaches, which include:

  •    The transition from spin & Nano-Electronic Transport (molecular spintronics) with the setting up of the very first molecular devices allowing the coupling of a spin state with electronic transport in a nanometric junction,
  •    The transition from spin & optics towards high-performance photonic devices with the implementation of Nano-Thermometric Sensors (patented) that surpass current commercial devices,
  •    Spin transition & reversible variation of molecular volume with the realization of the first Nano-Actuators with controlled direction whose chemical combination with polymers allowed the implementation of active materials "artificial muscles" with advanced applications in robotics and Micro-Nano-Mechanics.

With his research team made up of 3 other permanent staff members (Gabor Molnar, DR-CNRS, Lionel Salmon DR-CNRS and William Nicolazzi, MCF-Université Paul Sabatier), among his most remarkable achievements are the following:

  •    The development of the lsing-type model with two electronic levels for one- and two-step spin transition with prediction of symmetry breaks.[6]
  •    The discovery of the first magneto-switching by the application of an intense magnetic field (32 Tesla) pulsed into the hysteresis cycle of a spin transition molecule (Fe(Phen)2(NCS)2) allowing the information to be addressed from the high spin (HS) state to the low spin (BS) state, by a nucleation growth phenomenon whose dynamic effects are the subject of particular attention at the experimental and theoretical levels.[7][8]
  •    The discovery of the first hysteresis of the dielectric constant in spin-transition complexes.[9][10][11]
  •    The discovery of the first double photo-switching in binuclear spin-transition compounds[12]
  •    The first photo-switching at room temperature.[13]
  •    The first synthesis of spin-transition thin films at room temperature (new layer-by-layer concept for spin transition).[11][14]
  •    The first Nano-Structuring of Bistable materials with spin transition at room temperature.[15]
  •    The synthesis of the smallest spin-transition coordination nanoparticles (4 nm) with hysteresis around room temperature.[16]
  •    The original synthesis of a hybrid system combining spin transition and fluorescence for the purpose of detecting the spin transition property on the single Nano-Object.[17]
  •    The development of a new generation of active devices based on photonic/plasmonic spin-transition materials,[18] diffractive gas sensors,[19] Nano-Thermometers[17] and also Nano-Electronics,[20] and spintronic devices.[21]
  •    The recent development of switchable molecular materials for direction-controlled micro- and Nano-Actuation by exploiting the reversible volume variation of spin-transition molecules (development of the first artificial muscle prototypes) with thermo- or photo-induced actuation for robotic applications (ERC 2019 project under evaluation).[22][23][24][25][26]

He has supervised about twenty post-doctoral students and more than thirty theses.

He has registered 12 patents, 2 of which are being exploited, and one startup in incubation.

He is a member of 4 academies: the French Academy of Sciences (2013),[27] founding member of the Algerian Academy of Sciences and Technologies (2015), member of the European Academy of Sciences and arts (2012) and member of the European Academy of sciences (2014).

Awards

Prizes

  • Prestigious Süe Prize of the French Society of Chemistry, 2020
  • Korean Magnetic Society Award, 2012
  • Prix la Recherche, Chemistry section, 2011
  • Langevin Prize of the French Academy of Sciences (FR), 2009
  • SCF Co-ordination Chemistry Division Award, 2003

Honors

Scholarly Associations - Academies

  • Member of the French Academy of Sciences, 2013
  • Member of the European Academy of Sciences, 2014
  • Member of the European Academy of Sciences and Arts, 2012
  • Founding member of the Algerian Academy of Science and Technology, 2015
  • Member of the National Committee of the National Research Council, Section 14 (200-2004) and (2012-2016)
  • Member of the European Institute on Molecular Magnetism (EIMM)
  • Guest Editor, Coordination Chemistry Reviews, Elsevier, 2016
  • Guest Editor, International Journal of Molecular Sciences, MDPI, 2011
  • Guest Editor, New Journal of Chemistry, RCS, 2008
  • Coordination of the special issue of the Comptes Rendus Rendus of the Académie des Sciences on the phenomenon of spin transition, 2018

References

  1. "Académie des Sciences" (PDF).
  2. "LCC Toulouse".
  3. "" Matériaux Moléculaires Commutables " du LCC".
  4. "GDR Magnétisme et Commutation Moléculaires".
  5. "Rex Magmanet".
  6. A. Bousseksou, F. Varret, J. Nasser, « Ising-like model for the two-step spin-crossover of binuclear molecules », J. Phys. I (France), 3 (1993), p. 1463-1473
  7. A. Bousseksou, N. Negre, M. Goiran, L. Salmon, J.P. Tuchagues, M.L. Boillot, K. Boukhedaden, F. Varret, « Dynamic  triggering of a spin-transition  by a pulsed magnetic field », Eur. Phys. J. B, 13 (2000), p. 451-456
  8. A. Bousseksou, K. Bokheddaden, M. Goiran, C. Consejo, M.L. Boillot, J.P. Tuchagues, « Dynamic response of the spin-crossover solid Co(H2(fsa)2 en)(Py)2  to a pulsed magnetic field », Phys. Rev. B, 65 (2002), p. 172412
  9. A. Bousseksou, G. Molnár, P. Demont, J. Menegotto, « Observation of a thermal hysteresis loop in the dielectric constant of spin-crossover complexes : Towards molecular memory materials », J. Mater. Chem., 13 (2003), p. 2069-2071
  10. PCT Patent EP1430552 (23/06/2004)
  11. S. Cobo, G. Molnár, J.A. Real, A. Bousseksou, « Multilayer Sequential Assembly of Thin Films that Display Room-Temperature Spin Crossover with Hysteresis », Angew. Chem. Int. Ed., 45 (2006), p. 5786-5789
  12. N. Ould Moussa, G. Molnár, S. Bonhommeau, A. Zwick, S. Mouri, K. Tanaka, J. A. Real, A. Bousseksou, « Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases », Phys. Rev. Lett., 94 (2005), p. 107205
  13. S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J.A. Real, J.J. McGarvey, A. Bousseksou, « One-Shot-Laser-Pulse-Induced Reversible Spin Transition in the Spin Crossover Complex {Fe(C4H4N2)[Pt(CN)4]} at Room Temperature », Angew. Chem. Int. Ed., 44 (2005), p. 4069-4073
  14. S. Cobo, D. Ostrovskii, S. Bonhommeau, L. Vendier, G. Molnár, L. Salmon, K. Tanaka, A. Bousseksou, « Single-Laser-Shot-Induced Complete Bidirectional Spin Transition at Room Temperature », J. Am. Chem. Soc., 130 (2008), p. 9019–9024
  15. G. Molnár, S. Cobo, J.A. Real, F. Carcenac, E. Daran, C. Vieu, A. Bousseksou, « A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin Crossover Coordination Polymers », Adv. Mater., 19 (2007), p. 2163-2167
  16. Larionova, L. Salmon, Y. Guari, A. Tokarev, K. Molvinger, G. Molnár, A. Bousseksou, « Towards the ultimate size limit of the memory effect in spin crossover solids », Angew. Chem. Int. Ed., 47 (2008), p. 8236-8240
  17. L. Salmon, G. Molnár, D. Zitouni, C. Quintero, C. Bergaud, J.C. Micheau, A. Bousseksou, « A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles », J. Mater. Chem., 20 (2010), p. 5499 – 5503
  18. K. Abdul-Kader, M. Lopes, C. Bartual-Murgui, O. Kraieva, E.M. Hernández, L. Salmon, W. Nicolazzi, F. Carcenac, C. Thibault, G. Molnár, A. Bousseksou, « Synergistic Switching of Plasmonic Resonances and Molecular Spin States », Nanoscale, 5 (2013), p. 5288 - 5293
  19. C. Bartual-Murgui, A. Akou, L. Salmon, C. Thibault, G. Molnár, C. Vieu, A. Bousseksou, « Spin-Crossover Metal-Organic Frameworks: Promising Materials for Designing Gas Sensors », J. Mater. Chem., 3 c (2015), p. 1277-1285
  20. A. Rotaru, J. Dugay, R.P. Tan, I.A. Gural’skiy, L. Salmon, P. Demont, J. Carrey, G. Molnár, M. Respaud, A. Bousseksou, « Nano-Electro-Manipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices », Adv. Mater., 25 (2013), p. 1745-1749
  21. C. Wang, R. Ciganda, L. Salmon, D. Gregurec, J. Irigoyen, S. Moya, J. Ruiz, D. Astruc, « Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions », Angew. Chem. Int. Ed., 55 (2016), p. 3091
  22. H.J. Shepherd, I. A. Gural’skiy, C.M. Quintero, S. Tricard, L. Salmon, G. Molnár, A. Bousseksou, « Molecular Actuators Driven by Cooperative Spin-State Switching », Nature Commun., 4 (2013), p. 2607
  23. M.D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C.M. Quintero, L. Nicu, H.J. Shepherd, A. Bousseksou, « Switchable molecule-based materials for micro- and nanoscale actuating applications: achievements and prospects », Coord. Chem. Rev., 308 (2016), p. 395-408
  24. M.D. Manrique-Juárez, S. Rat, F. Mathieu, I. Séguy, T. Leichle, L. Nicu, L. Salmon, G. Molnár, A. Bousseksou, « Microelectromechanical systems integrating molecular spin crossover actuators », Appl. Phys. Lett., 109 (2016), p. 061903
  25. G. Molnar, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksou, « Spin crossover nanomaterials: from fundamental concepts to devices », Adv. Mater., 30 (2018), p. 1703862
  26. M. D. Manrique-Juarez, F. Mathieu, V. Shalabaeva, J. Cacheux, S. Rat, L. Nicu, T. Leïchlé, L. Salmon, G. Molnár, A. Bousseksou, « A Bistable Microelectromechanical System Actuated by Spin Crossover Molecules », Angew. Chem. Int. Ed., 56 (2017), p. 8074-8078
  27. "Académie des sciences".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.