Isotopes of bismuth

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

Isotopes of bismuth (83Bi)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
207Bi synth 31.55 y β+ 207Pb
208Bi synth 3.68×105 y β+ 208Pb
209Bi 100% 2.01×1019 y α 205Tl
210Bi trace 5.012 d β 210Po
α 206Tl
210mBi synth 3.04×106 y IT 210Bi
α 206Tl
Standard atomic weight Ar°(Bi)
  • 208.98040±0.00001
  • 208.98±0.01 (abridged)[2][3]

List of isotopes

Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 8]
Natural abundance (mole fraction)
Excitation energy[n 8] Normal proportion Range of variation
184Bi[4] 83 101 184.00112(14)# 13(2) ms α 180Tl 3+#
184mBi 150(100)# keV 6.6(15) ms α 180Tl 10−#
185Bi[5] 83 102 184.99763(6)# 2.8+2.3
−1.0
 μs
p (92%) 184Pb (1/2+)
α (8%) 181Tl
185mBi 70(50)# keV 58(2) μs IT 185Bi (7/2−, 9/2−)
186Bi[6] 83 103 185.99660(8) 14.8(7) ms α 182Tl (3+)
β+? 186Pb
β+, SF (0.011%) (various)
186mBi 170(100)# keV 9.8(4) ms α 182Tl (10−)
β+? 186Pb
β+, SF (0.011%) (various)
187Bi[6] 83 104 186.993158(16) 37(2) ms α 183Tl (9/2−)
β+ (rare) 187Pb
187m1Bi 108(8) keV 370(20) μs α 183Tl (1/2+)
187m2Bi 252(3) keV 7(5) μs IT 187Bi (13/2+)
188Bi[6] 83 105 187.99227(5) 60(3) ms α 184Tl (3+)
β+ (rare) 188Pb
β+, SF (0.0014%) (various)
188m1Bi 66(30) keV >5 μs IT 184Tl 7+#
188m2Bi 153(30) keV 265(15) ms α 184Tl (10−)
β+ (rare) 188Pb
189Bi[6] 83 106 188.98920(6) 688(5) ms α 185Tl (9/2−)
β+? 189Pb
189m1Bi 184(5) keV 5.0(1) ms α (83%) 185Tl (1/2+)
IT (17%) 189Bi
189m2Bi 357.6(5) keV 880(50) ns IT 189Bi (13/2+)
190Bi[6] 83 107 189.9883(2) 6.3(1) s α (77%) 186Tl (3+)
β+ (23%) 190Pb
β+, SF (6×10-6%) (various)
190m1Bi 120(40) keV 6.2(1) s α (70%) 186Tl (10−)
β+ (30%) 190Pb
β+,SF (4×10-6%) (various)
190m2Bi 121(15) keV 175(8) ns IT 190Bi (5−)
190m3Bi 394(40) keV 1.3(8) μs IT 190Bi (8−)
191Bi[6] 83 108 190.985786(8) 12.4(3) s α (51%) 187Tl (9/2−)
β+ (49%) 191Pb
191m1Bi 242(4) keV 124(5) ms α (68%) 187Tl (1/2+)
IT (32%) 191Bi
β+ (rare) 191Pb
191m2Bi 429.7(5) keV 562(10) ns IT 191Bi (13/2+)
191m3Bi 1875(25)# keV 400(40) ns IT 191Bi 25/2-#
192Bi 83 109 191.98546(4) 34.6(9) s β+ (82%) 192Pb (3+)
α (18%) 188Tl
192mBi 150(30) keV 39.6(4) s β+ (90.8%) 192Pb (10−)
α (9.2%) 188Tl
193Bi 83 110 192.98296(1) 67(3) s β+ (95%) 193Pb (9/2−)
α (5%) 189Tl
193mBi 308(7) keV 3.2(6) s α (90%) 189Tl (1/2+)
β+ (10%) 193Pb
194Bi 83 111 193.98283(5) 95(3) s β+ (99.54%) 194Pb (3+)
α (.46%) 190Tl
194m1Bi 110(70) keV 125(2) s β+ 194Pb (6+, 7+)
α (rare) 190Tl
194m2Bi 230(90)# keV 115(4) s (10−)
195Bi 83 112 194.980651(6) 183(4) s β+ (99.97%) 195Pb (9/2−)
α (.03%) 191Tl
195m1Bi 399(6) keV 87(1) s β+ (67%) 195Pb (1/2+)
α (33%) 191Tl
195m2Bi 2311.4+X keV 750(50) ns (29/2−)
196Bi 83 113 195.980667(26) 5.1(2) min β+ (99.99%) 196Pb (3+)
α (.00115%) 192Tl
196m1Bi 166.6(30) keV 0.6(5) s IT 196Bi (7+)
β+ 196Pb
196m2Bi 270(3) keV 4.00(5) min (10−)
197Bi 83 114 196.978864(9) 9.33(50) min β+ (99.99%) 197Pb (9/2−)
α (10−4%) 193Tl
197m1Bi 690(110) keV 5.04(16) min α (55%) 193Tl (1/2+)
β+ (45%) 197Pb
IT (.3%) 197Bi
197m2Bi 2129.3(4) keV 204(18) ns (23/2−)
197m3Bi 2360.4(5)+X keV 263(13) ns (29/2−)
197m4Bi 2383.1(7)+X keV 253(39) ns (29/2−)
197m5Bi 2929.5(5) keV 209(30) ns (31/2−)
198Bi 83 115 197.97921(3) 10.3(3) min β+ 198Pb (2+, 3+)
198m1Bi 280(40) keV 11.6(3) min β+ 198Pb (7+)
198m2Bi 530(40) keV 7.7(5) s 10−
199Bi 83 116 198.977672(13) 27(1) min β+ 199Pb 9/2−
199m1Bi 667(4) keV 24.70(15) min β+ (98%) 199Pb (1/2+)
IT (2%) 199Bi
α (.01%) 195Tl
199m2Bi 1947(25) keV 0.10(3) μs (25/2+)
199m3Bi ~2547.0 keV 168(13) ns 29/2−
200Bi 83 117 199.978132(26) 36.4(5) min β+ 200Pb 7+
200m1Bi 100(70)# keV 31(2) min EC (90%) 200Pb (2+)
IT (10%) 200Bi
200m2Bi 428.20(10) keV 400(50) ms (10−)
201Bi 83 118 200.977009(16) 108(3) min β+ (99.99%) 201Pb 9/2−
α (10−4%) 197Tl
201m1Bi 846.34(21) keV 59.1(6) min EC (92.9%) 201Pb 1/2+
IT (6.8%) 201Bi
α (.3%) 197Tl
201m2Bi 1932.2+X keV 118(28) ns (25/2+)
201m3Bi 1971.2+X keV 105(75) ns (27/2+)
201m4Bi 2739.90(20)+X keV 124(4) ns (29/2−)
202Bi 83 119 201.977742(22) 1.72(5) h β+ 202Pb 5(+#)
α (10−5%) 198Tl
202m1Bi 615(7) keV 3.04(6) μs (10#)−
202m2Bi 2607.1(5) keV 310(50) ns (17+)
203Bi 83 120 202.976876(23) 11.76(5) h β+ 203Pb 9/2−
α (10−5%) 199Tl
203m1Bi 1098.14(7) keV 303(5) ms IT 203Bi 1/2+
203m2Bi 2041.5(6) keV 194(30) ns 25/2+
204Bi 83 121 203.977813(28) 11.22(10) h β+ 204Pb 6+
204m1Bi 805.5(3) keV 13.0(1) ms IT 204Bi 10−
204m2Bi 2833.4(11) keV 1.07(3) ms (17+)
205Bi 83 122 204.977389(8) 15.31(4) d β+ 205Pb 9/2−
206Bi 83 123 205.978499(8) 6.243(3) d β+ 206Pb 6(+)
206m1Bi 59.897(17) keV 7.7(2) μs (4+)
206m2Bi 1044.8(5) keV 890(10) μs (10−)
207Bi 83 124 206.9784707(26) 32.9(14) y β+ 207Pb 9/2−
207mBi 2101.49(16) keV 182(6) μs 21/2+
208Bi 83 125 207.9797422(25) 3.68(4)×105 y β+ 208Pb (5)+
208mBi 1571.1(4) keV 2.58(4) ms IT 208Bi (10)−
209Bi
[n 9][n 10]
83 126 208.9803987(16) 2.01(8)×1019 y
[n 11]
α 205Tl 9/2− 1.0000
210Bi Radium E 83 127 209.9841204(16) 5.012(5) d β 210Po 1− Trace[n 12]
α (1.32×10−4%) 206Tl
210mBi 271.31(11) keV 3.04(6)×106 y α 206Tl 9−
211Bi Actinium C 83 128 210.987269(6) 2.14(2) min α (99.72%) 207Tl 9/2− Trace[n 13]
β (.276%) 211Po
211mBi 1257(10) keV 1.4(3) μs (25/2−)
212Bi Thorium C 83 129 211.9912857(21) 60.55(6) min β (64.05%) 212Po 1(−) Trace[n 14]
α (35.94%) 208Tl
β, α (.014%) 208Pb
212m1Bi 250(30) keV 25.0(2) min α (67%) 208Tl (9−)
β (33%) 212mPo
β, α (.3%) 208Pb
212m2Bi 2200(200)# keV 7.0(3) min >16
213Bi
[n 15][n 16]
83 130 212.994385(5) 45.59(6) min β (97.91%) 213Po 9/2− Trace[n 17]
α (2.09%) 209Tl
214Bi Radium C 83 131 213.998712(12) 19.9(4) min β (99.97%) 214Po 1− Trace[n 12]
α (.021%) 210Tl
β, α (.003%) 210Pb
215Bi 83 132 215.001770(16) 7.6(2) min β 215Po (9/2−) Trace[n 13]
215mBi 1347.5(25) keV 36.9(6) s IT (76.9%) 215Bi (25/2−)
β (23.1%) 215Po
216Bi 83 133 216.006306(12) 2.17(5) min β 216Po (6−, 7−)
216mBi 24(19) keV 6.6(21) min β 216Po 3−#
217Bi 83 134 217.009372(19) 98.5(8) s β 217Po 9/2−#
217mBi 1480(40) keV 2.70(6) μs IT 217Bi 25/2−#
218Bi 83 135 218.014188(29) 33(1) s β 218Po (6−, 7−, 8−)
219Bi 83 136 219.017480(210)# 8.7(29) s β 219Po 9/2−#
220Bi 83 137 220.022350(320)# 9.5(57) s β 220Po 1−#
This table header & footer:
  1. mBi  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    p:Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Formerly believed to be final decay product of 4n+1 decay chain
  10. Primordial radioisotope, also some is radiogenic from the extinct nuclide 237Np
  11. Formerly believed to be the heaviest stable nuclide
  12. Intermediate decay product of 238U
  13. Intermediate decay product of 235U
  14. Intermediate decay product of 232Th
  15. Used in medicine such as for cancer treatment.
  16. A byproduct of thorium reactors via 233U.
  17. Intermediate decay product of 237Np

Bismuth-213

Bismuth-213 (213Bi) has a half-life of 45 minutes and decays via alpha emission. Commercially, bismuth-213 can be produced by bombarding radium with bremsstrahlung photons from a linear particle accelerator, which populates its progenitor actinium-225. In 1997, an antibody conjugate with 213Bi was used to treat patients with leukemia. This isotope has also been tried in targeted alpha therapy (TAT) program to treat a variety of cancers.[7] Bismuth-213 is also found in the decay chain of uranium-233, which is the fuel bred by thorium reactors.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Bismuth". CIAAW. 2005.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Andreyev, A. N.; Ackermann, D.; Heßberger, F. P.; Hofmann, S.; Huyse, M.; Kojouharov, I.; Kindler, B.; Lommel, B.; Münzenberg, G.; Page, R. D.; Vel, K. Van de; Duppen, P. Van; Heyde, K. (1 October 2003). "α-decay spectroscopy of light odd-odd Bi isotopes - II: 186Bi and the new nuclide 184Bi" (PDF). The European Physical Journal A. 18 (1): 55–64. Bibcode:2003EPJA...18...55A. doi:10.1140/epja/i2003-10051-1. ISSN 1434-601X. S2CID 122369569. Retrieved 20 June 2023.
  5. Doherty, D. T.; Andreyev, A. N.; Seweryniak, D.; Woods, P. J.; Carpenter, M. P.; Auranen, K.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Canete, L.; Cubiss, J. G.; Harker, J.; Haylett, T.; Huang, T.; Janssens, R. V. F.; Jenkins, D. G.; Kondev, F. G.; Lauritsen, T.; Lederer-Woods, C.; Li, J.; Müller-Gatermann, C.; Potterveld, D.; Reviol, W.; Savard, G.; Stolze, S.; Zhu, S. (12 November 2021). "Solving the Puzzles of the Decay of the Heaviest Known Proton-Emitting Nucleus 185Bi". Physical Review Letters. 127 (20): 202501. Bibcode:2021PhRvL.127t2501D. doi:10.1103/PhysRevLett.127.202501. ISSN 0031-9007. PMID 34860042. S2CID 244089059. Retrieved 20 June 2023.
  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940. Retrieved 4 July 2023.
  7. Imam, S (2001). "Advancements in cancer therapy with alpha-emitters: a review". International Journal of Radiation Oncology, Biology, Physics. 51 (1): 271–278. doi:10.1016/S0360-3016(01)01585-1. PMID 11516878.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.