Bonse's inequality
In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pn, pn+1 are the smallest n + 1 prime numbers and n ≥ 4, then
(the middle product is short-hand for the primorial of pn)
Mathematician Denis Hanson showed an upper bound where .[2]
See also
Notes
- Bonse, H. (1907). "Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung". Archiv der Mathematik und Physik. 3 (12): 292–295.
- Hanson, Denis (March 1972). "On the Product of the Primes". Canadian Mathematical Bulletin. 15 (1): 33–37. doi:10.4153/cmb-1972-007-7. ISSN 0008-4395.
References
- Uspensky, J. V.; Heaslet, M. A. (1939). Elementary Number Theory. New York: McGraw Hill. p. 87.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.