Brownian sheet

In mathematics, a brownian sheet is a multiparametric generalization of the brownian motion to a gaussian random field. This means we generalize the "time" parameter of a brownian motion from to .

The exact dimension of the space of the new time parameter varies from authors. We follow John B. Walsh and define the -brownian sheet, while some authors define the brownian sheet specifically only for , what we call the -brownian sheet.[1]

(n,d)-Brownian sheet

A -dimensional gaussian process is called a -brownian sheet if

  • it has zero mean, i.e. for all
  • for the covariance function
for .[2]

Properties

From the definition follows

almost surely.

Examples

  • -brownian sheet is the brownian motion in .
  • -brownian sheet is the brownian motion in .
  • -brownian sheet is a one-dimensional brownian motion on the index set .

Literature

  • Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. ISBN 978-3-540-39781-6.
  • Khoshnevisan, Davar. Multiparameter Processes: An Introduction to Random Fields. Springer. ISBN 978-0387954592.

References

  1. Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. p. 269. ISBN 978-3-540-39781-6.
  2. Davar Khoshnevisan und Yimin Xiao (2004), Images of the Brownian Sheet, arXiv:math/0409491
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.