Ribbon (mathematics)

In differential geometry, a ribbon (or strip) is the combination of a smooth space curve and its corresponding normal vector. More formally, a ribbon denoted by includes a curve given by a three-dimensional vector , depending continuously on the curve arc-length (), and a unit vector perpendicular to at each point.[1] Ribbons have seen particular application as regards DNA.[2]

Properties and implications

The ribbon is called simple if is a simple curve (i.e. without self-intersections) and closed and if and all its derivatives agree at and . For any simple closed ribbon the curves given parametrically by are, for all sufficiently small positive , simple closed curves disjoint from .

The ribbon concept plays an important role in the Călugăreanu-White-Fuller formula,[3] that states that

where is the asymptotic (Gauss) linking number, the integer number of turns of the ribbon around its axis; denotes the total writhing number (or simply writhe), a measure of non-planarity of the ribbon's axis curve; and is the total twist number (or simply twist), the rate of rotation of the ribbon around its axis.

Ribbon theory investigates geometric and topological aspects of a mathematical reference ribbon associated with physical and biological properties, such as those arising in topological fluid dynamics, DNA modeling and in material science.

See also

References

  1. Blaschke, W. (1950) Einführung in die Differentialgeometrie. Springer-Verlag. ISBN 9783817115495
  2. Vologodskiǐ, Aleksandr Vadimovich (1992). Topology and Physics of Circular DNA (First ed.). Boca Raton, FL. p. 49. ISBN 978-1138105058. OCLC 1014356603.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Fuller, F. Brock (1971). "The writhing number of a space curve" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 68 (4): 815–819. Bibcode:1971PNAS...68..815B. doi:10.1073/pnas.68.4.815. MR 0278197. PMC 389050. PMID 5279522.

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.