C14orf80

Uncharacterized protein C14orf80 is a protein which in humans is encoded by the chromosome 14 open reading frame 80, C14orf80, gene.

TEDC1
Identifiers
AliasesTEDC1, C14orf80, chromosome 14 open reading frame 80, tubulin epsilon and delta complex 1
External IDsMGI: 2144738 HomoloGene: 77129 GeneCards: TEDC1
Orthologs
SpeciesHumanMouse
Entrez

283643

104732

Ensembl

ENSG00000185347

ENSMUSG00000037466

UniProt

Q86SX3

Q3UK37

RefSeq (mRNA)

NM_134041

RefSeq (protein)

NP_001128347
NP_001128348
NP_001128349
NP_001185912
NP_001354107

NP_598802

Location (UCSC)Chr 14: 105.49 – 105.5 MbChr 12: 113.12 – 113.13 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Gene

Location

C14orf80 is located on chromosome 14 (14q32.33) starting at 105,489,855bp and ending at 105,499,248bp. C14orf80 is 9,393 base pairs long and contains 11 exons that can be alternatively spliced to form different mRNA variants.[5]


Variants

Transcription of C14orf80 can produce 19 mRNA splice variants. Only six of these nineteen variants are predicted to not encode for a protein.[6] Of the mRNA variants that have been found experimentally, the longest is 1,719 base pairs and produces a protein with 426 amino acids.[7]

Expression

C14orf80 has been determined to be expressed in 77 types of tissues and 100 developmental stages.[8] It has also been determined to have a higher level of expression in a few cases of pancreatic and prostate cancer cells compared to normal tissue.[9]

Expression of C14orf80 in a variety of tissues

Homology

Paralogs

There are no paralogs of C14orf80.[10]

Orthologs

Using the BLAST program from NCBI, the orthologs of C14orf80 were found to range from primates to invertebrates. Below is a table that contains a variety of these orthologs.[11]

SpeciesCommon nameAccession numberDate of divergenceSequence length (AA)Sequence similarity
Homo sapiensHumanNP_0011283470 mya426100%
Chlorocebus sabaeusGreen monkeyXP_00798624729 mya42494%
Ictidomys tridecemlineatus13-lined ground squirrelXP_00533468092.3 mya42680%
Bos taurusCowXP_00358502694.2 mya41978%
Rattus norvegicusBrown ratXP_00272682792.3 mya42076%
Zonotrichia albicollisWhite-throated sparrowXP_005493655296 mya45453%
Pelodiscus sinensisChinese softshell turtleXP_006137260296 mya40451%
Xenopus tropicalisTropical clawed frogXP_002935771371.2 mya43750%
Danio rerioZebra fishXP_706561400.1 mya45241%
Camponotus floridanusFlorida carpenter antXP_011255960782.7 mya37438%

Evolution rate

When compared to the slow-evolving cytochrome C gene and the fast-evolving fibrinogen gene, gene C14orf80 is also fast-evolving.[11]

Shows how fast three different genes evolved over many millions of years.

Protein

General properties

Uncharacterized protein C14orf80 is 426 amino acids long with a molecular weight of 47 kDa.[12] Its isoelectric point is 8.9.[13]

C14orf80 amino acid sequence

Composition

The amino acid composition of the uncharacterized protein C14orf80.

Secondary structure

Uncharacterized protein C14orf80 is predicted to be entirely composed of alpha helices.[14] Using the program SOUSI-signal, it was predicted that uncharacterized protein C14orf80 does not contain a signal peptide and is a soluble protein.[15]

Domains

Uncharacterized protein C14orf80 has two functional domains. The first domain is the domain of unknown function 4509 and the second is the domain of unknown function 4510. As their naming states the functions of these domains are still unknown.[10]

DUF4509 is located at amino acid 45 to amino acid 228. In this domain of unknown function there is a conserved WLL sequence motif.[16]

DUF4510 is located at amino acid 263 to amino acid 425. In this domain of unknown function there are two conserved sequence motifs: LEA and WMD.[17]

Post-translational modification

Uncharacterized protein C14orf80 is predicted to have glycation and phosphorylation sites for post-translational modification. Of these sites three are for glycation, eight are for serine phosphorylation and one site is for threonine phosphorylation.[18][19]

Subcellular location

Uncharacterized protein C14orf80 is not predicted to be a transmembrane protein. It is mainly localized to the golgi apparatus but has been found in the nucleus and cytoplasm also.[20]

Interactions

Currently, there are 21 proteins that are predicted to interact with uncharacterized protein C14orf80. These 21 proteins were found using the databases Mentha,[21] BioGRID,[22] STRING,[23] GeneCards[24] and IntAct.[25] Below is a table of a variety of these 21 proteins.

Interacting proteinFull protein nameFunctionCitation
DDIT3DNA-damage inducible transcript 3Induces cell cycle arrest and apoptosis when ER stress[26]
CEBPZCCAAT enhancer binding proteinStimulates transcription from HSP70 promoter[26]
UBCUbiquitin CUdeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA (May 2012). "Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition". Molecular & Cellular Proteomics. 11 (5): 148–59. doi:10.1074/mcp.M111.016857. PMC 3418844. PMID 22505724.
FKBP5FK506 binding proteinImmunophilin protein with PPIaseTaipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S (July 2014). "A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways". Cell. 158 (2): 434–448. doi:10.1016/j.cell.2014.05.039. PMC 4104544. PMID 25036637.
DEF107ABeta-defensin 107Anti-bacterial activity[27]
XAGE1DCancer/testis antigen family 12 member 1D[28]
TRAK2Trafficking protein kinesin binding 2May regulate endosome to lysosome trafficking of membrane cargo[29]
NRF1Nuclear respiratory factor 1Transcription factor on nuclear genes encoding respiratory subunits and components of the mitochondrial transcription and replication machinery[30]

Clinical significance

Uncharacterized protein C14orf80 has been associated with tumors in the breast, CNS, endometrium, large intestine, lung, skin, and stomach.[31]

References

  1. GRCh38: Ensembl release 89: ENSG00000185347 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000037466 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. https://www.ncbi.nlm.nih.gov/gene/283643>
  6. "Summary - Homo sapiens - Ensembl genome browser 97".
  7. "Homo sapiens tubulin epsilon and delta complex 1 (TEDC1), transcript variant 1, mRNA". 2018-12-04.
  8. "Bgee - Gene: C14orf80 - ENSG00000185347 - Homo sapiens (human)".
  9. "Home - GEO Profiles - NCBI".
  10. "TEDC1 Gene - GeneCards | TEDC1 Protein | TEDC1 Antibody".
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (October 1990). "Basic local alignment search tool". Journal of Molecular Biology. 215 (3): 403–410. doi:10.1006/jmbi.1990.9999. PMID 2231712.
  12. Subramaniam S (July 1998). "The Biology Workbench--a seamless database and analysis environment for the biologist". Proteins. 32 (1): 1–2. doi:10.1002/(sici)1097-0134(19980701)32:1<1::aid-prot1>3.0.co;2-q. PMID 9672036. S2CID 1412129.
  13. Bjellqvist B, Basse B, Olsen E, Celis JE (1994). "Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions". Electrophoresis. 15 (3–4): 529–539. doi:10.1002/elps.1150150171. PMID 8055880. S2CID 25560231.
  14. Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S (March 1992). "Methods and algorithms for statistical analysis of protein sequences". Proceedings of the National Academy of Sciences of the United States of America. 89 (6): 2002–2006. Bibcode:1992PNAS...89.2002B. doi:10.1073/pnas.89.6.2002. PMC 48584. PMID 1549558.
  15. Gomi, M.; Sonoyama, M.; Mitaku, S. (2004). "High performance system for signal peptide prediction: SOSUIsignal". Chem-Bio Informatics Journal. 4 (4): 142–147. doi:10.1273/cbij.4.142.
  16. "Pfam: Family: DUF4509 (PF14970)".
  17. "Pfam: Family: DUF4510 (PF14971)".
  18. "NetGlycate 1.0 Server".
  19. "NetPhos 3.1 Server".
  20. "Cell atlas - C14orf80 - the Human Protein Atlas".
  21. Calderone A, Castagnoli L, Cesareni G (August 2013). "mentha: a resource for browsing integrated protein-interaction networks". Nature Methods. 10 (8): 690–691. doi:10.1038/nmeth.2561. PMID 23900247. S2CID 9733108.
  22. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (January 2006). "BioGRID: a general repository for interaction datasets". Nucleic Acids Research. 34 (Database issue): D535–D539. doi:10.1093/nar/gkj109. PMC 1347471. PMID 16381927.
  23. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. (January 2015). "STRING v10: protein-protein interaction networks, integrated over the tree of life". Nucleic Acids Research. 43 (Database issue): D447–D452. doi:10.1093/nar/gku1003. PMC 4383874. PMID 25352553.
  24. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. (August 2010). "GeneCards Version 3: the human gene integrator". Database. 2010: baq020. doi:10.1093/database/baq020. PMC 2938269. PMID 20689021.
  25. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. (January 2014). "The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases". Nucleic Acids Research. 42 (Database issue): D358–D363. doi:10.1093/nar/gkt1115. PMC 3965093. PMID 24234451.
  26. Behrends C, Sowa ME, Gygi SP, Harper JW (July 2010). "Network organization of the human autophagy system". Nature. 466 (7302): 68–76. Bibcode:2010Natur.466...68B. doi:10.1038/nature09204. PMC 2901998. PMID 20562859.
  27. Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, et al. (February 2011). "High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes". PLOS ONE. 6 (2): e16950. Bibcode:2011PLoSO...616950B. doi:10.1371/journal.pone.0016950. PMC 3037286. PMID 21339811.
  28. DeGrado-Warren J, Dufford M, Chen J, Bartel PL, Shattuck D, Frech GC (February 2008). "Construction and characterization of a normalized yeast two-hybrid library derived from a human protein-coding clone collection". BioTechniques. 44 (2): 265–73. doi:10.2144/000112674. PMID 18330356.
  29. Huttlin EL, Ting L, Bruckner RJ, Paulo JA, Gygi MP, Rad R, et al. High-Throughput Proteomic Mapping of Human Interaction Networks via Affinity-Purification Mass Spectrometry (Report).
  30. Satoh J, Kawana N, Yamamoto Y (2013). "Pathway Analysis of ChIP-Seq-Based NRF1 Target Genes Suggests a Logical Hypothesis of their Involvement in the Pathogenesis of Neurodegenerative Diseases". Gene Regulation and Systems Biology. 7: 139–52. doi:10.4137/GRSB.S13204. PMC 3825669. PMID 24250222.
  31. "Phenotypes - Homo sapiens - Ensembl genome browser 97".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.