CCDC188

CCDC188 or coiled-coil domain containing protein is a protein that in humans is encoded by the CCDC188 gene.[4]

CCDC188
Identifiers
AliasesCCDC188, coiled-coil domain containing 188
External IDsHomoloGene: 90442 GeneCards: CCDC188
Orthologs
SpeciesHumanMouse
Entrez

388849

102638083

Ensembl

ENSG00000234409

ENSMUSG00000090777

UniProt

H7C350

n/a

RefSeq (mRNA)

NM_001243537
NM_001365892

RefSeq (protein)

NP_001230466
NP_001352821

n/a

Location (UCSC)Chr 22: 20.15 – 20.15 Mbn/a
PubMed search[2][3]
Wikidata
View/Edit HumanView/Edit Mouse

Gene

Human CCDC188 gene spans 3715 nucleotides and is located on the minus strand of chromosome 22 at 22q11.21.[5] It is a protein coding gene that encodes CCDC188 protein.[6] The mRNA transcript consists of 9 different exons which are spliced to form the 6 distinct CCDC188 protein isoforms.[7] Genetic neighbors of CCDC188 include ZDHHC8, SNORA77B, and RANBP1.

Isoform Table
Transcript NameAccession NumberExonsNucleotide lengthFinal Protein Length (aa)
CCDC188NM_001365892.291476402
CCDC188 Isoform X1XM_005261238.372501435
CCDC188 Isoform X2XM_005261239.372445416
CCDC188 Isoform X4XM_011530170.292364402
CCDC188 Isoform X5XM_011530171.272396400
CCDC188 Isoform X6XM_005261241.372393399

RNA expression

CCDC188 is expressed at low levels across all adult tissues with increased expression in the pituitary gland and testis.[8] CCDC188 has decreased expression in G1 of the cell cycle.

Expression in Cell Cycle

Genes with similar mRNA expression in the hypothalamus, supraoptic nucleus, and dentate gyrus are shown in the table below.

Heatmap of CCDC188 RNA Expression in Human Brain
Co-expressed Genes
StructureGeneExpande NameFunctionPearson Coefficient
HypothalamusSKAP1Src Kinase Associated Phosphoprotein 1Couple T-cell antigen receptor stimulation to the activation of integrins0.71
CLIC1Chloride Intracellular Channel 1Nuclear chloride ion channel activity0.659
PPAPDC1BPhospholipid Phosphatase 5Converts diacylglycerol pyrophosphate into phosphatidate0.656
FAM27ANAlncRNA0.653
ZCWPW2Zinc Finger CW-Type and PWWP Domain Containing 2Transcription factor that binds to histone methyl groups-0.612
ZNF519Zinc Finger Protein 519Transcription Factor-0.61
SLC8A1Solute Carrier Family 8 Member A1Calcium and sodium ion exchange mediator-0.601
Supraoptic NucleusZNF181Zinc Finger Protein 181Transcription Factor0.996
DYNC1LI1Dynein Cytoplasmic 1 Light Intermediate ChainIntracellular trafficking and chromosome segregation during mitosis0.991
COX18Cytochrome C Oxidase Assembly Factor 18Integral membrane insertion into inner mitochondrial membrane0.991
LAMA2Laminin Subunit Alpha 2Attachment to basement membrane0.991
KCTD8Potassium Channel Tetramerization Domain Containing 8Determines kinetics of GABA-B receptor-0.985
KLHL2Kelch Like Family Member 2Mediates ubiquitination of target proteins-0.985
Dentate GyrusCXCL9CXC Motif Chemokine Ligand 9Antimicrobial protein0.879
KYNUKynureninaseBiosynthesis of NAD cofactors from tryptophan0.866
MASP1Mannose-Binding Lectin Associated Serine Protease 1Serine protease essential for adaptive immune response0.808
TRPC6Transient Receptor Potential Cation ChannelReceptor activated calcium channel0.805

The promoter region for CCDC188 contains highly conserved p53[9] and CREB-ATF4[10] binding sites.[11] Chromatin-immunoprecipitation analysis confirms p53 binding to the promoter region of CCDC188.[12] Significantly repressed CCDC188 mRNA expression is found in both testicular germ line tumors and lung squamous cell cancer.[13]

TGCT
LUSC
RNA-sequencing of CCDC188 in LUSC and TGCT (red) versus healthy samples (blue)

Copy number variations of CCDC188 have also been identified in lung squamous cell tumors with 16 tumors having amplifications and 4 having homodeletions.[14] Genes with significantly increased mRNA expression under CCDC188 amplification in lung squamous cell tumors are shown in the table below.

Upregulated Genes with CCDC188 Amplification
Genep-Valueq-ValueGenetic Locus
MAGED13.23E-060.013Xp11.22
MAPK135.37E-060.01496p21.31
RBM49.36E-060.020211q13.2
NYNRIN3.04E-050.032814q12
HDAC77.1E-050.048612q13.11
ZNF6757.25E-050.048619p12

Other predicted transcription factor binding sites for CCDC188 are shown in the figure to the right.[15]

Transcription Factor Binding Sites

Transcript regulation

Predicted CCDC188 3'UTR stem loops are shown in the figure below.[16]

CCDC188 3'UTR

Protein

CCDC188 Homodimer Structure

CCDC188 protein is 402 amino acids long and is 4.3 kDa.[17] The protein contains a leucine zipper and transmembrane domain.[18] The presence of both a leucine zipper domain and transmembrane domain suggests that CCDC188 protein functions as a transcription factor that is tightly regulated and must be cleaved out of a membrane to be activated. The inactive form of the protein is predicted to be located in the endoplasmic reticulum with the N-terminus and basic leucine zipper oriented in the cytosol.[19] Other membrane bound basic leucine zippers include ATF6 and OASIS.[20] Known nuclear transportation routes for membrane bound transcription factors in the endoplasmic reticulum include ubiquitination and destruction of the ER lumen region and COPII vesicular transport to the Golgi for proteolytic cleavage by resident proteases.[21]

Post-translational modifications

Two phosphate groups have been experimentally verified on serine residues 322 and 324 in B-cell leukemia.[22]

Homology

CCDC188 is conserved throughout all mammals including monotremes, marsupials, and placentals[23]

Ortholog Table
CladeGenus & SpeciesCommon NameTaxonomic GroupDivergence Date (MYA)Accession NumberQuery CoverSequence Length (aa)Sequence Identity (%)Sequence Similarity (%)
PlacentalsHomo sapiensHumanPrimate0NP_001352821.1100402100100
Gorilla gorillaWestern GorillaPrimate9XP_004063092.31004029798
Rhinopithecus roxellanaGolden Snub Nosed MonkeyPrimate29XP_010386733.21003939091
Marmota flaviventrisYellow-Bellied MarmotRodentia89XP_027780043.11004077682
Leptonychotes weddelliWeddell SealCarnivora94XP_030873069.11004077682
Ailuropoda melanoleucaGiant PandaCarnivora94XP_011225007.21004077682
Canis lupusGrey WolfCarnivora94XP_025330588.11004077682
Talpa occidentalisSpanish MoleInsectivora94XP_037351914.11004067479
Globicephala melasLong Finned Pilot WhaleDelphinidae94XP_030692560.11004087480
Molossus molossusVelvety Free-Tailed BatChiroptera94XP_036132060.11004047479
Eptesicus fuscusBig Brown BatChiroptera94XP_008140813.21014047380
Rhinolophus ferrumequinumGreater Horshoe BatChiroptera94XP_032953151.11004077279
MarsupialsPhascolarctos cinereusKoalaPhascolarctidae160XP_020852118.1412314465
Dromiciops gliroidesColocolo OpossumMicrobiotheridae160XP_043845525.1623654261
Monodelphis domesticaGray Short Tailed OpossumDidelphidae160XP_007490407.1623114161
Vombatus ursinusCommon WombatVombatidae160XP_027703176.1623094061
Trichosurus vulpeculaBrushtail PossumPhalangeroidae160XP_036604697.1622894059
Sarcophilus harrisiiTasmanian DevilDasyuridae160XP_031804879.1653133852
MonotremesOrnithorhynchus anatinusDuck-Billed PlatypusPlatypus180XP_028905014.1402463557
Tachyglossus aculeatusShort-Beaked EchidnaEchidna180XP_038618232.1403833555

When CCDC188 first appeared approximately 180 million years ago in monotremes, it lacked a basic leucine zipper. Marsupials were the first mammals to evolve a CCDC188 basic leucine zipper domain. The rate of evolution of CCDC188 measured by sequence identity to humans shows that CCDC188 initially evolved quickly at a rate of 0.97 changes per 100 amino acids per million years. Beginning with the first placentals, CCDC188 evolution slowed to a rate of 0.45 changes per 100 amino acids per million years. One paralog for CCDC188 exists in humans known as CCDC188-like. This gene first appeared in marsupials.

CCDC188 Rate of Evolution

Pathology

A nonsense mutation in the coding region of CCDC188 has been implicated in retinitis pigmentosa,[24] a retinal degeneration process marked by uncontrolled death of rod cells. CCDC188 is also deleted in 22q11.2 deletion syndrome.

Diagram of CCDC188 and Nonsense Mutation Seen in Retinitis Pigmentosa

References

  1. GRCh38: Ensembl release 89: ENSG00000234409 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "coiled-coil domain-containing protein 188 [Homo sapiens]". NCBI Protein. Retrieved 2021-09-26.
  5. "CCDC188 Gene". GeneCards. Retrieved 26 September 2021.
  6. "CCDC188". NCBI Gene. Retrieved 28 September 2021.
  7. "CCDC188". NCBI Gene. Retrieved 28 September 2021.
  8. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. (January 2015). "Proteomics. Tissue-based map of the human proteome". Science. 347 (6220): 1260419. doi:10.1126/science.1260419. PMID 25613900. S2CID 802377.
  9. Fridman JS, Lowe SW (December 2003). "Control of apoptosis by p53". Oncogene. 22 (56): 9030–9040. doi:10.1038/sj.onc.1207116. PMID 14663481. S2CID 16321935.
  10. Wortel IM, van der Meer LT, Kilberg MS, van Leeuwen FN (November 2017). "Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells". Trends in Endocrinology and Metabolism. 28 (11): 794–806. doi:10.1016/j.tem.2017.07.003. PMC 5951684. PMID 28797581.
  11. "El Dorado". Genomatix. Intrexon Bioinformatics Germany GmbH 2019. Retrieved 6 December 2021.
  12. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. (December 2018). "ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data". EMBO Reports. 19 (12). doi:10.15252/embr.201846255. PMC 6280645. PMID 30413482.
  13. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (July 2017). "GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses". Nucleic Acids Research. 45 (W1): W98–W102. doi:10.1093/nar/gkx247. PMC 5570223. PMID 28407145.
  14. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. (May 2012). "The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data". Cancer Discovery. 2 (5): 401–404. doi:10.1158/2159-8290.CD-12-0095. PMC 3956037. PMID 22588877.
  15. "El Dorado". Genomatix. Intrexon Bioinformatics Germany GmbH 2019. Retrieved 6 December 2021.
  16. Markham NR, Zuker M (2008). UNAFold: software for nucleic acid folding and hybridization. Methods in Molecular Biology. Vol. 453. pp. 3–31. doi:10.1007/978-1-60327-429-6_1. PMID 18712296.
  17. "coiled-coil domain-containing protein 188 [Homo sapiens]". NCBI Protein. Retrieved 2021-09-26.
  18. "coiled-coil domain-containing protein 188 [Homo sapiens]". NCBI Protein. Retrieved 2021-09-26.
  19. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O (November 2017). "DeepLoc: prediction of protein subcellular localization using deep learning". Bioinformatics. 33 (21): 3387–3395. doi:10.1093/bioinformatics/btx431. PMID 29036616.
  20. Stirling J, O'hare P (January 2006). "CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P". Molecular Biology of the Cell. 17 (1): 413–426. doi:10.1091/mbc.e05-06-0500. PMC 1345678. PMID 16236796.
  21. Liu Y, Li P, Fan L, Wu M (April 2018). "The nuclear transportation routes of membrane-bound transcription factors". Cell Communication and Signaling. 16 (1): 12. doi:10.1186/s12964-018-0224-3. PMC 5883603. PMID 29615051.
  22. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (January 2015). "PhosphoSitePlus, 2014: mutations, PTMs and recalibrations". Nucleic Acids Research. 43 (Database issue): D512–D520. doi:10.1093/nar/gku1267. PMC 4383998. PMID 25514926.
  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (September 1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". Nucleic Acids Research. 25 (17): 3389–3402. doi:10.1093/nar/25.17.3389. PMC 146917. PMID 9254694.
  24. Yi Z, Ouyang J, Sun W, Li S, Xiao X, Zhang Q (June 2020). "Comparative exome sequencing reveals novel candidate genes for retinitis pigmentosa". EBioMedicine. 56: 102792. doi:10.1016/j.ebiom.2020.102792. PMC 7248430. PMID 32454406.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.