Carré du champ operator

The carré du champ operator (French for square of a field operator) is a bilinear, symmetric operator from analysis and probability theory. The carré du champ operator measures how far an infinitesimal generator is from being a derivation.[1]

The operator was introduced in 1969[2] by Hiroshi Kunita and independently discovered in 1976[3] by Jean-Pierre Roth in his doctorial thesis.

The name "carré du champ" comes from electrostatics.

Carré du champ operator for a Markov semigroup

Let be a σ-finite measure space, a Markov semigroup of non-negative operators on , the infinitesimale generator of and the algebra of functions in , i.e. a vector space such that for all also .

Carré du champ operator

The carré du champ operator of a Markovian semigroup is the operator definied (following P. A. Meyer) as

for all .[4][5]

Properties

From the definition follows[1]

The carré du champ operator is positive then for follows from that and

The domain is

Remarks

  • The definition in Roth's thesis is slightly different.[3]

Bibliography

  • Ledoux, Michel (2000). "The geometry of Markov diffusion generators". Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. 9 (2): 305–366. doi:10.5802/afst.962.
  • Meyer, Paul-André (1976). "L'Operateur carré du champ". Séminaire de Probabilités X Université de Strasbourg. Lecture Notes in Mathematics (in French). Vol. 511. Berlin, Heidelberg: Springer. pp. 142–161. doi:10.1007/BFb0101102. ISBN 978-3-540-07681-0.

References

  1. Ledoux, Michel (2000). "The geometry of Markov diffusion generators". Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. 9 (2): 312.
  2. Kunita, Hiroshi (1969). "Absolute continuity of Markov processes and generators". Nagoya Mathematical Journal. 36: 1–26. doi:10.1017/S0027763000013106. S2CID 118693611.
  3. Roth, Jean-Pierre (1976). "Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues". Annales de l'Institut Fourier. 26 (4): 1–97. doi:10.5802/aif.632.
  4. Ledoux, Michel (2000). "The geometry of Markov diffusion generators". Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. 9 (2): 305–366. doi:10.5802/afst.962.
  5. Meyer, Paul-André (1976). "L'Operateur carré du champ". Séminaire de Probabilités X Université de Strasbourg. Lecture Notes in Mathematics (in French). Vol. 511. Berlin, Heidelberg: Springer. pp. 142–161. doi:10.1007/BFb0101102. ISBN 978-3-540-07681-0.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.