Christoffel–Darboux formula
In mathematics, the Christoffel–Darboux theorem is an identity for a sequence of orthogonal polynomials, introduced by Elwin Bruno Christoffel (1858) and Jean Gaston Darboux (1878). It states that
where fj(x) is the jth term of a set of orthogonal polynomials of squared norm hj and leading coefficient kj.
There is also a "confluent form" of this identity by taking limit:
Proof
Let be a sequence of polynomials orthonormal with respect to a probability measure , and define
(they are called the "Jacobi parameters"), then we have the three-term recurrence[1]
Proof: By definition, , so if , then is a linear combination of , and thus . So, to construct , it suffices to perform Gram-Schmidt process on using , which yields the desired recurrence.
Proof of Christoffel–Darboux formula:
Since both sides are unchanged by multiplying with a constant, we can scale each to .
Since is a degree polynomial, it is perpendicular to , and so . Now the Christoffel-Darboux formula is proved by induction, using the three-term recurrence.
See also
References
- Świderski, Grzegorz; Trojan, Bartosz (2021-08-01). "Asymptotic Behaviour of Christoffel–Darboux Kernel Via Three-Term Recurrence Relation I". Constructive Approximation. 54 (1): 49–116. doi:10.1007/s00365-020-09519-w. ISSN 1432-0940. S2CID 202677666.
- Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, ISBN 978-0-521-62321-6, MR 1688958
- Christoffel, E. B. (1858), "Über die Gaußische Quadratur und eine Verallgemeinerung derselben.", Journal für die Reine und Angewandte Mathematik (in German), 55: 61–82, doi:10.1515/crll.1858.55.61, ISSN 0075-4102, S2CID 123118038
- Darboux, Gaston (1878), "Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série", Journal de Mathématiques Pures et Appliquées (in French), 4: 5–56, 377–416, JFM 10.0279.01
- Abramowitz, Milton; Stegun, Irene A. (1972), Handbook of Mathematical Functions, Dover Publications, Inc., New York, p. 785, Eq. 22.12.1
- Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W. (2010), "NIST Handbook of Mathematical Functions", NIST Digital Library of Mathematical Functions, Cambridge University Press, p. 438, Eqs. 18.2.12 and 18.2.13, ISBN 978-0-521-19225-5 (Hardback, ISBN 978-0-521-14063-8 Paperback)
- Simons, Frederik J.; Dahlen, F. A.; Wieczorek, Mark A. (2006), "Spatiospectral concentration on a sphere", SIAM Review, 48 (1): 504–536, arXiv:math/0408424, doi:10.1137/S0036144504445765, S2CID 27519592