Isotopes of copper
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 27 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours, while the least stable is 54Cu with a half-life of approximately 75 ns. Most have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.[4]
| |||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Cu) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68Cu, 69Cu, 71Cu, 72Cu, and 76Cu each have one metastable isomer. 70Cu has two isomers, making a total of 7 distinct isomers. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 69mCu with a half-life of 360 ns.[4]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life |
Decay mode [n 4] |
Daughter isotope [n 5] |
Spin and parity [n 6][n 7] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 7] | Normal proportion | Range of variation
|- |
52Cu | 29 | 23 | 51.99718(28)# | p | 51Ni | (3+)# | ||||||||||
53Cu | 29 | 24 | 52.98555(28)# | <300 ns | p | 52Ni | (3/2−)# | ||||||||||||
54Cu | 29 | 25 | 53.97671(23)# | <75 ns | p | 53Ni | (3+)# | ||||||||||||
55Cu | 29 | 26 | 54.96605(32)# | 40# ms [>200 ns] | β+ | 55Ni | 3/2−# | ||||||||||||
p | 54Ni | ||||||||||||||||||
56Cu | 29 | 27 | 55.95856(15)# | 93(3) ms | β+ | 56Ni | (4+) | ||||||||||||
57Cu | 29 | 28 | 56.949211(17) | 196.3(7) ms | β+ | 57Ni | 3/2− | ||||||||||||
58Cu | 29 | 29 | 57.9445385(17) | 3.204(7) s | β+ | 58Ni | 1+ | ||||||||||||
59Cu | 29 | 30 | 58.9394980(8) | 81.5(5) s | β+ | 59Ni | 3/2− | ||||||||||||
60Cu | 29 | 31 | 59.9373650(18) | 23.7(4) min | β+ | 60Ni | 2+ | ||||||||||||
61Cu | 29 | 32 | 60.9334578(11) | 3.333(5) h | β+ | 61Ni | 3/2− | ||||||||||||
62Cu | 29 | 33 | 61.932584(4) | 9.673(8) min | β+ | 62Ni | 1+ | ||||||||||||
63Cu | 29 | 34 | 62.9295975(6) | Stable | 3/2− | 0.6915(15) | 0.68983–0.69338 | ||||||||||||
64Cu | 29 | 35 | 63.9297642(6) | 12.700(2) h | β+ (61%) | 64Ni | 1+ | ||||||||||||
β− (39%) | 64Zn | ||||||||||||||||||
65Cu | 29 | 36 | 64.9277895(7) | Stable | 3/2− | 0.3085(15) | 0.30662–0.31017 | ||||||||||||
66Cu | 29 | 37 | 65.9288688(7) | 5.120(14) min | β− | 66Zn | 1+ | ||||||||||||
67Cu | 29 | 38 | 66.9277303(13) | 61.83(12) h | β− | 67Zn | 3/2− | ||||||||||||
68Cu | 29 | 39 | 67.9296109(17) | 31.1(15) s | β− | 68Zn | 1+ | ||||||||||||
68mCu | 721.6(7) keV | 3.75(5) min | IT (84%) | 68Cu | (6−) | ||||||||||||||
β− (16%) | 68Zn | ||||||||||||||||||
69Cu | 29 | 40 | 68.9294293(15) | 2.85(15) min | β− | 69Zn | 3/2− | ||||||||||||
69mCu | 2741.8(10) keV | 360(30) ns | (13/2+) | ||||||||||||||||
70Cu | 29 | 41 | 69.9323923(17) | 44.5(2) s | β− | 70Zn | (6−) | ||||||||||||
70m1Cu | 101.1(3) keV | 33(2) s | β− | 70Zn | (3−) | ||||||||||||||
70m2Cu | 242.6(5) keV | 6.6(2) s | 1+ | ||||||||||||||||
71Cu | 29 | 42 | 70.9326768(16) | 19.4(14) s | β− | 71Zn | (3/2−) | ||||||||||||
71mCu | 2756(10) keV | 271(13) ns | (19/2−) | ||||||||||||||||
72Cu | 29 | 43 | 71.9358203(15) | 6.6(1) s | β− | 72Zn | (1+) | ||||||||||||
72mCu | 270(3) keV | 1.76(3) µs | (4−) | ||||||||||||||||
73Cu | 29 | 44 | 72.936675(4) | 4.2(3) s | β− (>99.9%) | 73Zn | (3/2−) | ||||||||||||
β−, n (<.1%) | 72Zn | ||||||||||||||||||
74Cu | 29 | 45 | 73.939875(7) | 1.594(10) s | β− | 74Zn | (1+, 3+) | ||||||||||||
75Cu | 29 | 46 | 74.94190(105) | 1.224(3) s | β− (96.5%) | 75Zn | (3/2−)# | ||||||||||||
β−, n (3.5%) | 74Zn | ||||||||||||||||||
76Cu | 29 | 47 | 75.945275(7) | 641(6) ms | β− (97%) | 76Zn | (3, 5) | ||||||||||||
β−, n (3%) | 75Zn | ||||||||||||||||||
76mCu | 0(200)# keV | 1.27(30) s | β− | 76Zn | (1, 3) | ||||||||||||||
77Cu | 29 | 48 | 76.94785(43)# | 469(8) ms | β− | 77Zn | 3/2−# | ||||||||||||
78Cu | 29 | 49 | 77.95196(43)# | 342(11) ms | β− | 78Zn | |||||||||||||
79Cu | 29 | 50 | 78.95456(54)# | 188(25) ms | β−, n (55%) | 78Zn | 3/2−# | ||||||||||||
β− (45%) | 79Zn | ||||||||||||||||||
80Cu | 29 | 51 | 79.96087(64)# | 100# ms [>300 ns] | β− | 80Zn | |||||||||||||
This table header & footer: |
- mCu – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
-
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Medical applications
Copper offers a relatively large number of radioisotopes that are potentially suitable for use in nuclear medicine.
There is a growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[5]
References
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Copper". CIAAW. 1969.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
- Application of Copper radioisotopes in Medicine (Review Paper):
- Pejman Rowshanfarzad; Mahsheed Sabet; AmirReza Jalilian; Mohsen Kamalidehghan (2006). "An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron". Applied Radiation and Isotopes. 64 (12): 1563–1573. doi:10.1016/j.apradiso.2005.11.012. PMID 16377202.