Crush injury
A crush injury is injury by an object that causes compression of the body.[1][2] This form of injury is rare in normal civilian practice, but common following a natural disaster.[3] Other causes include industrial accidents, road traffic collisions, building collapse, accidents involving heavy plant, disaster relief or terrorist incidents.[4]
Crush injury | |
---|---|
Specialty | Emergency medicine |
Presentation
Complications
- Hypovolaemic shock. Loss of plasma volume across damaged cell membranes and capillary walls can lead directly to severe hypovolaemia.[4] Shock can develop from myocardial depression following release of intracellular electrolytes. In addition, as a result of the mechanism of injury, blood loss from pelvic or long bone fractures may also co-exist.
- Hyperkalaemia and electrolyte imbalance. Disruption of cell membranes can result in a significant release of potassium, which is a largely intracellular cation that can precipitate cardiac arrest. Sequestration of plasma calcium into injured tissue can lead to a relative hypocalcaemia, which may worsen disruption of clotting abilities and shock. Metabolic acidosis may result from reperfusion injury and hypoperfusion related to shock.
- Compartment syndrome. Compartment syndrome is a common complication of crush injury as a consequence of oedematous tissue injury, redistribution of fluid into the intracellular compartment and bleeding. Established compartment syndrome may result in worsened systemic crush syndrome and irreversible muscle cell death.[4]
- Acute kidney injury. Release of myoglobin by injured muscle leads to rhabdomyolysis coupled with shock leads to a significant rate of acute kidney injury, estimated as up to 15%.[5] Acute kidney injury leads to a significantly higher mortality.
Pathophysiology
Crush syndrome is a systemic result of skeletal muscle injury and breakdown and subsequent release of cell contents.[4] The severity of crush syndrome is dependent on the duration and magnitude of the crush injury as well as the bulk of muscle affected. It can result from both short-duration, high-magnitude injuries (such as being crushed by a building) or from low-magnitude, long-duration injuries such as coma or drug-induced immobility.[4]
Treatment
Early fluid resuscitation reduces the risk of kidney failure, reduces the severity of hyperkalaemia and may improve outcomes in isolated crush injury.[4]
For casualties with isolated crush injury who are haemodynamically stable, large-volume crystalloid fluid resuscitation reduces the severity of and reduces the risk of acute kidney injury.[5]
See also
References
- crush injury, Chicago: Encyclopædia Britannica, 2010
- Ron Walls; John J. Ratey; Robert I. Simon (2009). Rosen's Emergency Medicine: Expert Consult Premium Edition - Enhanced Online Features and Print (Rosen's Emergency Medicine: Concepts & Clinical Practice (2 vol.)). St. Louis: Mosby. pp. 2482–3. ISBN 978-0-323-05472-0.
- N.A. Jagodzinski; C. Weerasinghe; K. Porter (July 2011). "Crush injuries and crush syndrome—A review". Injury Extra. 42 (9): 154–5. doi:10.1016/j.injury.2011.06.368.
- Greaves, I; Porter, K; Smith, JE (August 2003). "Consensus Statement On The Early Management Of Crush Injury And Prevention Of Crush Syndrome" (PDF). Faculty of Prehospital Care, Royal College of Surgeons of Edinburgh. 149 (4): 255–259. doi:10.1016/S1479-666X(03)80073-2. PMID 15015795.
- Bartels S; VanRooyen M (2012). "Medical Complications Associated With Earthquakes". The Lancet. 379 (9817): 748–57. doi:10.1016/S0140-6736(11)60887-8. PMID 22056246. S2CID 37486772.
Further reading
- Rajasekaran S. (2005). "Ganga hospital open injury severity score - A score to prognosticate limb salvage and outcome measures in Type IIIb open tibial fractures". Indian J Orthop. 39 (1): 4–13. Archived from the original on 2016-09-16. Retrieved 2016-09-06.
External links