Cryotherapy

Cryotherapy, sometimes known as cold therapy, is the local or general use of low temperatures in medical therapy. Cryotherapy may be used to treat a variety of tissue lesions.[1] The most prominent use of the term refers to the surgical treatment, specifically known as cryosurgery or cryoablation. Cryosurgery is the application of extremely low temperatures to destroy abnormal or diseased tissue and is used most commonly to treat skin conditions.

Cryotherapy is used in an effort to relieve muscle pain, sprains and swelling after soft tissue damage or surgery. For decades, it has been commonly used to accelerate recovery in athletes after exercise. Cryotherapy decreases the temperature of tissue surface to minimize hypoxic cell death, edema accumulation, and muscle spasms, all of which ultimately alleviate discomfort and inflammation.[2] It can be a range of treatments from the application of ice packs or immersion in ice baths (generally known as cold therapy), to the use of cold chambers.

Cryotherapy chamber

Partial-Body Cryotherapy chamber by Vacuactivus

There are different types of cryochambers, each with different mechanisms of action and uses. The Partial-Body Cryotherapy (PBC) makes use of nitrogen to decrease the temperature. This cryochamber is an individual, tube-shaped enclosure that covers a person's body with an open-top to keep the head at room temperature.[3]

The second cryochamber is called the whole body cryotherapy (WBC) and makes use of electricity to reduce the temperature inside the chamber. In contrast to the first, the user fully enters the electrically operated chamber.

This is a specific type of low-temperature treatment used to reduce inflammation and painful effects.[4]

Cryotherapy was developed in the 1970s by Japanese rheumatologist Toshima Yamaguchi[5][6] and introduced to Europe, US and Australia in the 1980s[7][8] and 1990s.[9] Both cryochambers decrease the skin temperature, but WBC reaches lower temperatures than PBC and might be considered more effective.[10]

Mechanism of action

When the body is vulnerable to extreme cooling, the blood vessels are narrowed and make less blood flow to the areas of swelling. Once outside the cryogenic chamber, the vessels expand, and an increased presence of anti-inflammatory proteins (IL-10) is established in the blood.[11] Cryotherapy chamber involves exposing individuals to freezing dry air (below −100 °C) for 2 to 4 minutes.[12]

Main uses

Proponents say that cryotherapy may reduce pain and inflammation, help with mental disorders, support exercise recovery performance and improves joint function. Cryotherapy chambers belong to the group of equipment associated with sports rehabilitation and wellness.

Cryosurgery

Medical cryotherapy gun

Cryosurgery is the application of extreme cold to destroy abnormal or diseased tissue. The application of ultra-cold liquid causes damage to the treated tissue due to intracellular ice formation. The degree of damage depends upon the minimum temperature achieved and the rate of cooling.[14] Cryosurgery is used to treat a number of diseases and disorders, most especially skin conditions like warts, moles, skin tags and solar keratoses. Liquid nitrogen is usually used to freeze the tissues at the cellular level. The procedure is used often as it is relatively easy and quick, can be done in the doctors surgery, and is deemed quite low risk. If a cancerous lesion is suspected then excision rather than cryosurgery may be deemed more appropriate.[15] Contraindications to the use of cryosurgery include but are not limited to; using it over a neoplasm, someone with conditions that are worsened by exposure to cold (i.e. Raynaud’s, urticaria), and poor circulation or no sensation in the area.[16] There are some precautions to using cryosurgery. They include someone with collagen vascular disease, dark-skinned individuals (due to high risk of hypopigmentation), and impaired sensation at the area being treated.[17]

Ice pack therapy

Ice pack therapy is a treatment of cold temperatures to an injured area of the body. Though the therapy is extensively used, and it is agreed that it alleviates symptoms, testing has produced conflicting results about its efficacy and possibility of producing undesirable results([18]) .[19][20][21][22]

An ice pack is placed over an injured area and is intended to absorb heat of a closed traumatic or Edematous injury by using conduction to transfer thermal energy. The physiologic effects of cold application include immediate vasoconstriction with reflexive vasodilation, decreased local metabolism and enzymatic activity, and decreased oxygen demand. Cold decreases muscle spindle fiber activity and slows nerve conduction velocity; therefore, it is often used to decrease spasticity and muscle guarding. It is commonly used to alleviate the pain of minor injuries, as well as decrease muscle soreness. The use of ice packs in treatment decreases the blood flow most rapidly at the beginning of the cooling period,[23] this occurs as a result of vasoconstriction, the initial reflex sympathetic activity. Although the use of cryotherapy has been shown to aid in muscle recovery, some studies have highlighted that the degree of muscle cooling in humans is not significant enough to produce a considerable effect on muscle recovery. Based on previous research comparing human and animal models, the insufficient degree of cooling is due to larger limb size, more adipose tissue, and a higher muscle diameter in humans.[24]

Ice is not commonly used prior to rehabilitation or performance because of its known adverse effects to performance such as decreased myotatic reflex and force production, as well as a decrease in balance immediately following ice pack therapy for 20 minutes.[25] However, if ice pack therapy is applied for less than 10 minutes, performance can occur without detrimental effects. If the ice pack is removed at this time, athletes are sent back to training or competition directly with no decrease in performance.[26] Ice has also been shown to possibly slow and impair muscle protein synthesis and repair in recreational athletes. This is especially true for cold water immersion, but equivalent controlled studies have not been done to see if the same effects hold true for ice packs. Regardless, ice has been shown in studies to inhibit the uptake of dietary protein post-muscle conditioning exercise.

Although there are many positive effects of cryotherapy in athletes' short-term recovery, in recent years, there has been much controversy regarding whether cryotherapy is actually beneficial or may be causing the opposite effect. While inflammation that occurs post-injury or from a damaging exercise may be detrimental to secondary tissue, it is beneficial for the structural and functional repair of the damaged tissue. Therefore, some researchers are now recommending that ice not be used so as not to delay the natural healing process following an injury. The original RICE (rest, ice, compression, elevation) method was rescinded because the inflammatory response is necessary for the healing process, and this practice may delay healing instead of facilitating it. Animal studies also show that a disrupted inflammatory stage of healing may lead to impaired tissue repair and redundant collagen synthesis.[27]

There is a study that concludes that cryotherapy has a positive impact on the short-term recovery of athletes. Cryotherapy helped manage muscle soreness and facilitate recovery within the first 24 hours following a sport-related activity. Athletes who use cryotherapy within the first 24 hours to alleviate pain recovered at a faster rate than athletes who did not use cryotherapy after their sport-related activity.[2]

Cryotherapy following total knee replacement

Post-surgical management following total knee replacement surgery may include cryotherapy with the goal of helping with pain management and blood loss following surgery.[28] Cryotherapy is applied using ice, cold water, or gel packs, sometimes in specialized devices that surround the skin and surgical site (but keeps the surgical site clean).[28] Evidence from clinical trials regarding the effectiveness of cryotherapy is weak and because of this, the use of cryotherapy may not be justified.[28] Weak evidence indicates that cryotherapy used postoperatively may be associated with a small decrease in blood loss and pain following the surgery. No clinically significant improvements in range of motion have been reported. There are not many side effects or adverse effects reported with this intervention.[28]

Cold spray anesthetics

In addition to their use in cryosurgery, several types of cold aerosol sprays are used for short-term pain relief. Unlike other cold modalities, it doesn’t produce similar physiological effects due to the fact it decreases skin temperature, not muscle temperature. It reflexively inhibits underling muscle by using evaporation to cool the area.[29] Ordinary spray cans containing tetrafluoroethane, dimethyl ether, or similar substances, are used to numb the skin prior to or possibly in place of local anesthetic injections, and prior to other needles, small incisions, sutures, and so on. Other products containing chloroethane are used to ease sports injuries, similar to ice pack therapy. Cold aerosol spray could also be used to relieve trigger points and improve range of motion. After applying the cold spray, one can stretch the muscle and will then have improved mobility and a decrease in pain immediately.[30][31][32] However, this is only a short-term effect as the pain relief and improved range of motion can wear off within a minute.[33]

Whole body cryotherapy

Cryotherapy patients during preparation of treatment of c. 3 minutes

An increasing amount of research is done on the effects of whole-body cryotherapy (WBC) on exercise, beauty, and health. Research is often inconsistent because the usage of the different types of cryo-chambers, and different treatment periods. However, it becomes increasingly clear that WBC has a positive effect on muscle soreness and decreases the recovery time after exercise.[34] Some older papers show inconsistencies in the effects.[9]

Cryotherapy is also increasingly used as a non-drug treatment against rheumatoid arthritis, stress, anxiety, or chronic pain, multiple sclerosis and fibromyalgia.[3] Studies for these, and other diseases (Alzheimer's, migraines), are ongoing although more evidence becomes available on the positive effects of Whole Body Cryotherapy. The FDA points out that the effects of Whole Body Cryotherapy lacks evidence and should be researched more.[35]

Cryotherapy treatment involves exposing individuals to extremely cold dry air (below −100 °C) for two to four minutes. Yet, three to four minute exposure to WBC is different from a one to two minute exposure. It is more beneficial to expose for a shorter amount of time to increase therapeutic benefits. Longer durations have negative effects on thermal sensation, tissue oxygenation, and blood volume. Also, the amount of sessions is an important part of the healing process. Just one session will not exhibit significant effects. A minimum of twenty sessions is required. Thirty sessions is recommended for optimal effects though.[36] To achieve the subzero temperatures required for WBC, two methods are typically used: liquid nitrogen and refrigerated cold air. During these exposures, individuals wear minimal clothing, which usually consists of shorts for males, and shorts and a crop top for females. Gloves, a woollen headband covering the ears, and a nose and mouth mask, in addition to dry shoes and socks, are commonly worn to reduce the risk of cold-related injury. The first WBC chamber was built in Japan in the late 1970s, introduced to Europe in the 1980s, and has been used in the US and Australia in the past decade.[9]

Adverse effects

Reviews of whole-body cryotherapy have called for research studies to implement active surveillance of adverse events, which are suspected of being underreported.[9][37] If the cold temperatures are produced by evaporating liquid nitrogen, there is the risk of inert gas asphyxiation as well as frostbite.[38] However, these risks are irrelevant in the electronically operated chambers.

Contraindications

Contraindications include patients with cardiovascular disease, arterial hypertension, acute infectious diseases, seizures, cold allergy, and some psychiatric disorders.[39]

Partial body

Partial body cryotherapy (PBC) devices also exist. If the cold temperatures are produced by evaporating liquid nitrogen, there is the risk of inert gas asphyxiation as well as frostbite.[38]

See also

References

  1. Cryotherapy at eMedicine
  2. Jinnah, Alexander H; Luo, Tianyi David; Mendias, Christopher; Freehill, Michael (May 2019). "Cryotherapy duration is critical in short-term recovery of athletes: a systematic review". Journal of ISAKOS. 4 (3): 131–136. doi:10.1136/jisakos-2018-000259. S2CID 198304421. ProQuest 2275802941.
  3. Bouzigon R, Grappe F, Ravier G, Dugue B (October 2016). "Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications". Journal of Thermal Biology. 61: 67–81. doi:10.1016/j.jtherbio.2016.08.009. PMID 27712663.
  4. Lombardi G, Ziemann E, Banfi G (2 May 2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8: 258. doi:10.3389/fphys.2017.00258. PMC 5411446. PMID 28512432.
  5. "Elite Athletes Are Utilizing Cryotherapy For Recovery". patients.scnm.edu. Retrieved 23 February 2021.
  6. "Why are people freezing their bodies?". theweek.com. 18 April 2017. Retrieved 23 February 2021.
  7. Romuk E, Skrzep-Poloczek B, Wiśniowska B, Owczarek AJ, Choręza P, Sieroń A, Birkner E, Stygar D Biomed Res Int, 2019:2065346, 15 May 2019 Cited by: 1 article | PMID 31223612 | PMCID: PMC6541937
  8. The effect of cryotherapy on total antioxidative capacity in patients with active seropositive rheumatoid arthritis. Hirvonen H, Kautiainen H, Moilanen E, Mikkelsson M, Leirisalo-Repo M Rheumatol Int, 37(9):1481–1487, 11 July 2017 Cited by: 6 articles | PMID 28698947
  9. Costello JT, Baker PR, Minett GM, Bieuzen F, Stewart IB, Bleakley C (September 2015). "Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults". The Cochrane Database of Systematic Reviews. 2015 (9): CD010789. doi:10.1002/14651858.CD010789.pub2. PMC 9579836. PMID 26383887.
  10. Polidori, G.; Taiar, R.; Boyer, F.C. (20 July 2018). "Infrared thermography for assessing skin temperature differences between Partial Body Cryotherapy and Whole Body Cryotherapy devices at -140 °C". Infrared Physics & Technology. 93: 158–161. Bibcode:2018InPhT..93..158P. doi:10.1016/j.infrared.2018.07.025. ISSN 1350-4495. S2CID 126379520.
  11. Lubkowska A, Szyguła Z, Chlubek D, Banfi G (September 2011). "The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men". Scandinavian Journal of Clinical and Laboratory Investigation. 71 (5): 419–425. doi:10.3109/00365513.2011.580859. PMID 21574854. S2CID 37200856.
  12. Douzi W, Dupuy O, Tanneau M, Boucard G, Bouzigon R, Dugué B (July 2019). "3-min whole body cryotherapy/cryostimulation after training in the evening improves sleep quality in physically active men". European Journal of Sport Science. 19 (6): 860–867. doi:10.1080/17461391.2018.1551937. PMID 30551730. S2CID 54632568.
  13. Klimenko T, Ahvenainen S, Karvonen SL (June 2008). "Whole-body cryotherapy in atopic dermatitis". Archives of Dermatology. 144 (6): 806–808. doi:10.1001/archderm.144.6.806. PMID 18559779.
  14. Andrews MD (May 2004). "Cryosurgery for common skin conditions". American Family Physician. 69 (10): 2365–2372. PMID 15168956.
  15. "Information about Non-Melanoma Skin Cancers". Skcin – The Karen Clifford Skin Cancer Charity. Retrieved 29 July 2017.
  16. Prohaska, Joseph; Jan, Abdul H. (2023), "Cryotherapy", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 29493944, retrieved 30 March 2023
  17. Sharma, Vinod; Khandpur, Sujay (July–August 2009). "Guidelines for cryotherapy". ProQuest: 90–100. ProQuest 195116522.
  18. Fuchs CJ, Kouw IW, Churchward-Venne TA, Smeets JS, Senden JM, Lichtenbelt WD, et al. (February 2020). "Postexercise cooling impairs muscle protein synthesis rates in recreational athletes". The Journal of Physiology. 598 (4): 755–772. doi:10.1113/JP278996. PMC 7028023. PMID 31788800.
  19. Bleakley C, McDonough S, MacAuley D (2004). "The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials". The American Journal of Sports Medicine. 32 (1): 251–261. doi:10.1177/0363546503260757. PMID 14754753. S2CID 23999521.
  20. Mac Auley DC (July 2001). "Ice therapy: how good is the evidence?". International Journal of Sports Medicine. 22 (5): 379–384. doi:10.1055/s-2001-15656. PMID 11510876. S2CID 58828671.
  21. Thorsson O (March 2001). "[Cold therapy of athletic injuries. Current literature review]". Läkartidningen. 98 (13): 1512–1513. PMID 11330146.
  22. Hohenauer E, Taeymans J, Baeyens JP, Clarys P, Clijsen R (2015). "The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis". PLOS ONE. 10 (9): e0139028. Bibcode:2015PLoSO..1039028H. doi:10.1371/journal.pone.0139028. PMC 4586380. PMID 26413718.
  23. Swenson C, Swärd L, Karlsson J (August 1996). "Cryotherapy in sports medicine". Scandinavian Journal of Medicine & Science in Sports. 6 (4): 193–200. doi:10.1111/j.1600-0838.1996.tb00090.x. PMID 8896090. S2CID 32962326.
  24. Tiidus, Peter M. (1 June 2015). "Alternative treatments for muscle injury: massage, cryotherapy, and hyperbaric oxygen". Current Reviews in Musculoskeletal Medicine. 8 (2): 162–167. doi:10.1007/s12178-015-9261-3. ISSN 1935-9748. PMC 4596174. PMID 25724774.
  25. Cross KM, Wilson RW, Perrin DH (April 1996). "Functional performance following an ice immersion to the lower extremity". Journal of Athletic Training. 31 (2): 113–116. PMC 1318440. PMID 16558383.
  26. Saam F, Leidinger B, Tibesku CO (March 2008). "[The influence of cryotherapy of the ankle on static balance]". Sportverletzung Sportschaden. 22 (1): 45–51. doi:10.1055/s-2007-963601. PMID 18350484. S2CID 260331309.
  27. Kwiecien, Susan Y.; McHugh, Malachy P. (1 August 2021). "The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise". European Journal of Applied Physiology. 121 (8): 2125–2142. doi:10.1007/s00421-021-04683-8. ISSN 1439-6327. PMID 33877402. S2CID 233311582.
  28. Aggarwal, Ashwin; Adie, Sam; Harris, Ian A.; Naylor, Justine (14 September 2023). "Cryotherapy following total knee replacement". The Cochrane Database of Systematic Reviews. 9 (9): CD007911. doi:10.1002/14651858.CD007911.pub3. ISSN 1469-493X. PMC 10500624. PMID 37706609.
  29. Bostelman, Chelsea (1 October 2018). "Vapocoolant Sprays: Use With Totally Implanted Venous Access Devices". Clinical Journal of Oncology Nursing. 22 (5): 561–563. doi:10.1188/18.CJON.561-563. PMID 30239525. S2CID 52311236. ProQuest 2113758283.
  30. Khan, Urooj; Akhter, Saeed; Khan, Muhammad; Baig, Aftab Ahmed Mirza (1 September 2021). "Effectiveness of ischemic compression pressure versus spray and stretch technique in the management of active myofascial trigger points of trapezius muscle". International Journal of Endorsing Health Science Research (IJEHSR). 9 (3): 315–321. doi:10.29052/IJEHSR.v9.i3.2021.315-321. ISSN 2310-3841.
  31. Dalvandi, Asghar; Ranjbar, Hadi; Hatamizadeh, Maryam; Rahgoi, Abolfazl; Bernstein, Colleen (August 2017). "Comparing the effectiveness of vapocoolant spray and lidocaine/procaine cream in reducing pain of intravenous cannulation: A randomized clinical trial". The American Journal of Emergency Medicine. 35 (8): 1064–1068. doi:10.1016/j.ajem.2017.02.039. PMID 28285862. S2CID 205324322.
  32. Kostopoulos, Dimitrios; Rizopoulos, Konstantine (1 April 2008). "Effect of topical aerosol skin refrigerant (Spray and Stretch technique) on passive and active stretching". Journal of Bodywork and Movement Therapies. 12 (2): 96–104. doi:10.1016/j.jbmt.2007.11.005. ISSN 1360-8592. PMID 19083662.
  33. Farion, K. J.; Splinter, K. L.; Newhook, K.; Gaboury, I.; Splinter, W. M. (12 June 2008). "The effect of vapocoolant spray on pain due to intravenous cannulation in children: a randomized controlled trial". Canadian Medical Association Journal. 179 (1): 31–36. doi:10.1503/cmaj.070874. ISSN 0820-3946. PMC 3267474. PMID 18591524.
  34. Lombardi G, Ziemann E, Banfi G (2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8 (258): 258. doi:10.3389/fphys.2017.00258. PMC 5411446. PMID 28512432.
  35. "Whole Body Cryotherapy (WBC): A "Cool" Trend that Lacks Evidence, Poses Risks". www.fda.gov. U.S. Food and Drug Administration. 5 July 2016. Retrieved 6 January 2019.
  36. Lombardi, Giovanni; Ziemann, Ewa; Banfi, Giuseppe (2 May 2017). "Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature". Frontiers in Physiology. 8: 258. doi:10.3389/fphys.2017.00258. ISSN 1664-042X. PMC 5411446. PMID 28512432.
  37. Bleakley CM, Bieuzen F, Davison GW, Costello JT (March 2014). "Whole-body cryotherapy: empirical evidence and theoretical perspectives". Open Access Journal of Sports Medicine. 5: 25–36. doi:10.2147/OAJSM.S41655. PMC 3956737. PMID 24648779.
  38. "The spread of cryotherapy". The Economist. 23 March 2017. Retrieved 27 March 2017.
  39. Missmann, M.; Himsl, M.; Mur, E.; Ulmer, H.; Marschang, P. (1 February 2016). "Impact of Whole Body Cryotherapy at −110 °C on Subjects with Arterial Hypertension". Archivum Immunologiae et Therapiae Experimentalis. 64 (1): 75–82. doi:10.1007/s00005-015-0363-9. ISSN 1661-4917. PMID 26408646. S2CID 253597757.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.