Dyson's transform

Dyson's transform is a fundamental technique in additive number theory.[1] It was developed by Freeman Dyson as part of his proof of Mann's theorem,[2]:17 is used to prove such fundamental results of Additive Number Theory as the Cauchy-Davenport theorem,[1] and was used by Olivier Ramaré in his work on the Goldbach conjecture that proved that every even integer is the sum of at most 6 primes.[3]:700–701 The term Dyson's transform for this technique is used by Ramaré.[3]:700–701 Halberstam and Roth call it the τ-transformation.[2]:58

Freeman Dyson in 2005

This formulation of the transform is from Ramaré.[3]:700–701 Let A be a sequence of natural numbers, and x be any real number. Write A(x) for the number of elements of A which lie in [1, x]. Suppose and are two sequences of natural numbers. We write A + B for the sumset, that is, the set of all elements a + b where a is in A and b is in B; and similarly A  B for the set of differences a  b. For any element e in A, Dyson's transform consists in forming the sequences and . The transformed sequences have the properties:


Other closely related transforms are sometimes referred to as Dyson transforms. This includes the transform defined by , , , for sets in a (not necessarily abelian) group. This transformation has the property that

  • ,

It can be used to prove a generalisation of the Cauchy-Davenport theorem.[4]

References

  1. Additive Number Theory: Inverse Problems and the Geometry of Sumsets By Melvyn Bernard Nathanson, Springer, Aug 22, 1996, ISBN 0-387-94655-1, https://books.google.com/books?id=PqlQjNhjkKUC&q=%22e-transform%22 p. 42
  2. Halberstam, H.; Roth, K. F. (1983). Sequences (revised ed.). Berlin: Springer-Verlag. ISBN 978-0-387-90801-4.
  3. O. Ramaré (1995). "On šnirel'man's constant". Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV. 22 (4): 645–706. Retrieved 2009-03-13.
  4. DeVos, Matt (2016). "On a Generalization of the Cauchy-Davenport Theorem". Integers. 16.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.