Fermi–Ulam model

The FermiUlam model (FUM) is a dynamical system that was introduced by Polish mathematician Stanislaw Ulam in 1961.

FUM is a variant of Enrico Fermi's primary work on acceleration of cosmic rays, namely Fermi acceleration. The system consists of a particle that collides elastically between a fixed wall and a moving one, each of infinite mass. The walls represent the magnetic mirrors with which the cosmic particles collide.

A. J. Lichtenberg and M. A. Lieberman provided a simplified version of FUM (SFUM) that derives from the Poincaré surface of section and writes


where is the velocity of the particle after the -th collision with the fixed wall, is the corresponding phase of the moving wall, is the velocity law of the moving wall and is the stochasticity parameter of the system.

If the velocity law of the moving wall is differentiable enough, according to KAM theorem invariant curves in the phase space exist. These invariant curves act as barriers that do not allow for a particle to further accelerate and the average velocity of a population of particles saturates after finite iterations of the map. For instance, for sinusoidal velocity law of the moving wall such curves exist, while they do not for sawtooth velocity law that is discontinuous. Consequently, at the first case particles cannot accelerate infinitely, reversely to what happens at the last one.

Over the years FUM became a prototype model for studying non-linear dynamics and coupled mappings.

The rigorous solution of the Fermi-Ulam problem (the velocity and energy of the particle are bounded) was given first by L. D. Pustyl'nikov in [1] (see also [2] and references therein).

In spite of these negative results, if one considers the Fermi–Ulam model in the framework of the special theory of relativity, then under some general conditions the energy of the particle tends to infinity for an open set of initial data.[3]

2D generalization

Though the 1D FermiUlam model does not lead to acceleration for smooth oscillations, unbounded energy growth has been observed in 2D billiards with oscillating boundaries,[4][5][6][7][8] The growth rate of energy in chaotic billiards is found to be much larger than that in billiards that are integrable in the static limit.

Strongly chaotic billiard with oscillating boundary can serve as a paradigm for driven chaotic systems.[9] In the experimental arena this topic arises in the theory of nuclear friction,[10][11] and more recently in the studies of cold atoms that are trapped in optical billiards.[12] The driving induces diffusion in energy,[13][14] and consequently the absorption coefficient is determined by the Kubo formula.[15][16][17][18]

References

  1. L.D. Pustyl'nikov, (1983). On a problem of Ulam. Teoret. Mat.Fiz.57, 128-132. Engl. transl. in Theor. Math. Phys. 57.
  2. L. D. Pustyl'nikov (1995). "Poincaré models, rigorous justification of the second law of thermodynamics from mechanics, and Fermi acceleration mechanism". Russian Math. Surveys. 50 (1): 145–189. Bibcode:1995RuMaS..50..145P. doi:10.1070/RM1995v050n01ABEH001663. S2CID 250875392.
  3. L. D. Pustyl'nikov (1988). "A new mechanism for particle acceleration and a relativistic analogue of the Fermi-Ulam model". Theor. Math. Phys. 77 (1): 1110–1115. Bibcode:1988TMP....77.1110P. doi:10.1007/BF01028687. S2CID 120290250.
  4. Loskutov A., Ryabov A. B., Akinshin L. G. (2000). "Properties of some chaotic billiards with time-dependent boundaries". J. Phys. A: Math. Gen. 33 (44): 7973. Bibcode:2000JPhA...33.7973L. doi:10.1088/0305-4470/33/44/309. S2CID 55969054.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. A.P. Itin, A.I. Neishtadt, A.A Vasiliev (2001), Resonant phenomena in slowly perturbed rectangular billiards, Phys. Lett. A 291, 133. https://doi.org/10.1016/S0375-9601(01)00670-3
  6. Gelfreich V., Turaev D. (2008). "Fermi acceleration in non-autonomous billiards". J. Phys. A: Math. Theor. 41 (21): 212003. Bibcode:2008JPhA...41u2003G. doi:10.1088/1751-8113/41/21/212003. S2CID 12572964.
  7. F. Lenz; F. K. Diakonos; P. Schmelcher (2008). "Tunable Fermi Acceleration in the Driven Elliptical Billiard". Phys. Rev. Lett. 100 (1): 014103. arXiv:0801.0641. Bibcode:2008PhRvL.100a4103L. doi:10.1103/PhysRevLett.100.014103. PMID 18232773. S2CID 35145404.
  8. A.P. Itin, A.I. Neishtadt (2012), Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances, Chaos 22, 026119. https://doi.org/10.1063/1.4705101
  9. Driven chaotic mesoscopic systems,dissipation and decoherence, in Proceedings of the 38th Karpacz Winter School of Theoretical Physics, Edited by P. Garbaczewski and R. Olkiewicz (Springer, 2002). https://arxiv.org/abs/quant-ph/0403061
  10. D.H.E. Gross (1975). "Theory of nuclear friction". Nucl. Phys. A. 240 (3): 472–484. Bibcode:1975NuPhA.240..472G. doi:10.1016/0375-9474(75)90305-X.
  11. Blocki J., Boneh Y., Nix J.R., Randrup J., Robel M., Sierk A.J., Swiatecki W.J. (1978). "One-body dissipation and the super-viscidity of nuclei". Ann. Phys. 113 (2): 330. Bibcode:1978AnPhy.113..330B. doi:10.1016/0003-4916(78)90208-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Friedman N., Kaplan A., Carasso D., Davidson N. (2001). "Observation of Chaotic and Regular Dynamics in Atom-Optics Billiards". Phys. Rev. Lett. 86 (8): 1518–21. Bibcode:2001PhRvL..86.1518F. doi:10.1103/physrevlett.86.1518. PMID 11290182.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. E. Ott (1979). "Goodness of Ergodic Adiabatic Invariants". Phys. Rev. Lett. 42 (24): 1628–1631. Bibcode:1979PhRvL..42.1628O. doi:10.1103/PhysRevLett.42.1628.
  14. R. Brown; E. Ott; C. Grebogi (1987). "Ergodic Adiabatic Invariants of Chaotic systems". Phys. Rev. Lett. 59 (11): 1173–1176. Bibcode:1987PhRvL..59.1173B. doi:10.1103/PhysRevLett.59.1173. PMID 10035162.
  15. Wilkinson M (1988). "Statistical aspects of dissipation by Landau-Zener transitions". J. Phys. A. 21 (21): 4021. Bibcode:1988JPhA...21.4021W. doi:10.1088/0305-4470/21/21/011.
  16. Cohen D (2000). "Chaos and Energy Spreading for Time-Dependent Hamiltonians, and the Various Regimes in the Theory of Quantum Dissipation". Annals of Physics. 283 (2): 175. arXiv:cond-mat/9902168. Bibcode:2000AnPhy.283..175C. doi:10.1006/aphy.2000.6052. S2CID 51787849.
  17. Barnett A., Cohen D., Heller E.J. (2000). "Deformations and Dilations of Chaotic Billiards: Dissipation Rate, and Quasiorthogonality of the Boundary Wave Functions". Phys. Rev. Lett. 85 (7): 1412–5. arXiv:nlin/0003018. Bibcode:2000PhRvL..85.1412B. doi:10.1103/physrevlett.85.1412. PMID 10970517. S2CID 10273905.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Barnett A., Cohen D., Heller E.J. (2001). "Rate of energy absorption for a driven chaotic cavity". J. Phys. A. 34 (3): 413–438. arXiv:nlin/0006041. Bibcode:2001JPhA...34..413B. doi:10.1088/0305-4470/34/3/308. S2CID 10454573.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Regular and Chaotic Dynamics: A widely acknowledged scientific book that treats FUM, written by A. J. Lichtenberg and M. A. Lieberman (Appl. Math. Sci. vol 38) (New York: Springer).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.