Fionn Dunne
Fionn Patrick Edward Dunne FREng FIMMM is a Professor of Materials Science at Imperial College London and holds the Chair in Micromechanics and the Royal Academy of Engineering/Rolls-Royce Research Chair.[2] Professor Dunne specialises in computational crystal plasticity and microstructure-sensitive nucleation and growth of short fatigue cracks in engineering materials, mainly Nickel, Titanium and Zirconium alloys.[3]
Professor Fionn Dunne | |
---|---|
Born | Fionn Patrick Edward Dunne[1] |
Education | University of Bristol (BSc, MEngSc) University of Sheffield (PhD) |
Scientific career | |
Fields | Materials science specialised in Crystal plasticity Hexagonal close-packed and Ni alloys Micromechanics Fatigue and Fracture mechanics |
Institutions | University of Bristol University of Sheffield University of Manchester University of Oxford Imperial College London |
Thesis | Computer Aided Modelling of Creep-cyclic Plasticity Interaction in Engineering Materials and Structures |
Doctoral advisor | D.R. Hayhurst |
Website | Imperial College London MIDAS |
Early life and education
Dunne completed a Bachelor of Science and Master of Engineering degree from the Department of Mechanical Engineering, University of Bristol by 1989,[4] and moved to the Department of Mechanical and Process Engineering, University of Sheffield, for a Doctor of Philosophy in Computer Aided Modelling of Creep-cyclic Plasticity Interaction in Engineering Materials and Structures.[5][6]
Research and career
In 1994, Dunne was appointed as a Postdoctoral research associate in the Department of Mechanical Engineering, University of Manchester (UMIST), before being appointed a Research Fellowship at Hertford College, Oxford and the Department of Engineering Science, University of Oxford from 1996 until 2012.[7] He became the dean of the department but moved to Imperial College London in 2012. He is an Emeritus Fellow of Hertford College, Oxford.[8]
While in Oxford, Dune was part of the Materials for fusion & fission power program.[9] He led the Micro-mechanical modelling techniques for forming texture, non-proportionality and failure in auto materials program at the Department of Engineering Science, University of Oxford between October 2011 and June 2012,[10] when he moved the grant with him to the Department of Materials, Imperial College London from June 2012 until it ended in March 2015.[11]
He also led the Heterogeneous Mechanics in Hexagonal Alloys across Length and Time Scales (HexMat) program, which was Engineering and Physical Sciences Research Council (EPSRC) funded at a value of £5 million between May 2013 and November 2018.[12] Dunne was the director of the Rolls-Royce Nuclear University Technology Centre at Imperial College London. He is part of a £7.2 million program on Mechanistic understanding of Irradiation Damage in fuel Assemblies (MIDAS) that is funded by Engineering and Physical Sciences Research Council until April 2024[13]
As of November 2022, Dunne is a Professor of Materials Science at Imperial College London and holds the Chair in Micromechanics and the Royal Academy of Engineering (RAEng)/Rolls-Royce Research Chair. Hi is also a Rolls-Royce consultant , and an Honorary Professor and co-director of the Beijing International Aeronautical Materials (BIAM).[2]
Dunne's research focuses on computational crystal plasticity,[14] discrete dislocation plasticity,[15] and microstructure-sensitive nucleation and growth of short fatigue cracks in engineering materials,[16][17] mainly Nickel,[18] Titanium,[19][20] and Zirconium[21] alloys.
Awards and honours
In 2010, Dunne was elected a Fellow of the Royal Academy of Engineering (FREng).[2] In 2016, he was awarded the Institute of Materials, Minerals and Mining (IoM3) Harvey Flower Titanium Prize.[22] In 2017, Dunne's Engineering Alloys team shared the Imperial President's Award for Outstanding Research Team with Professor Chris Phillips’s team.[23]
Selected publications
- Dunne, Fionn; Petrinic, Nik (2005). Introduction to computational plasticity. Oxford: Oxford University Press. ISBN 978-1-4294-5996-9. OCLC 85895917.
- McDowell, D.L.; Dunne, F.P.E. (2010). "Microstructure-sensitive computational modeling of fatigue crack formation". International Journal of Fatigue. Elsevier BV. 32 (9): 1521–1542. doi:10.1016/j.ijfatigue.2010.01.003. ISSN 0142-1123.
- Dunne, F.P.E.; Rugg, D.; Walker, A. (2007). "Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys". International Journal of Plasticity. Elsevier BV. 23 (6): 1061–1083. doi:10.1016/j.ijplas.2006.10.013. ISSN 0749-6419.
- Britton, T. B.; Liang, H.; Dunne, F. P. E.; Wilkinson, A. J. (2009-11-11). "The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. 466 (2115): 695–719. Bibcode:2010RSPSA.466..695B. doi:10.1098/rspa.2009.0455. ISSN 1364-5021. S2CID 2030079.
- Korsunsky, A; Dini, D; Dunne, F; Walsh, M (2007). "Comparative assessment of dissipated energy and other fatigue criteria?". International Journal of Fatigue. Elsevier BV. 29 (9–11): 1990–1995. doi:10.1016/j.ijfatigue.2007.01.007. hdl:10044/1/1339. ISSN 0142-1123.
- Wan, V.V.C.; MacLachlan, D.W.; Dunne, F.P.E. (2014). "A stored energy criterion for fatigue crack nucleation in polycrystals". International Journal of Fatigue. Elsevier BV. 68: 90–102. doi:10.1016/j.ijfatigue.2014.06.001. ISSN 0142-1123.
- Chen, Bo; Jiang, Jun; Dunne, Fionn P.E. (2018). "Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?". International Journal of Plasticity. Elsevier BV. 101: 213–229. doi:10.1016/j.ijplas.2017.11.005. hdl:10044/1/61871. ISSN 0749-6419.
References
- "News and Publications - Machine Intelligence Laboratory" (PDF). Cambridge. 2010.
- "Fionn Dunne". MIDAS. Retrieved 2022-10-31.
- "PWP Messages". www.imperial.ac.uk. Retrieved 2022-10-31.
- Dunne, F P E; Heppenstall, M (January 1990). "The Effect of Joints on the Transverse Vibration of a Simple Structure". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 204 (1): 37–42. doi:10.1243/PIME_PROC_1990_204_073_02. ISSN 0263-7154. S2CID 109537371.
- Dunne, F. P. E.; Makin, J.; Hayhurst, D. R. (1992-06-08). "Automated procedures for the determination of high temperature viscoplastic damage constitutive equations". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 437 (1901): 527–544. Bibcode:1992RSPSA.437..527D. doi:10.1098/rspa.1992.0078. S2CID 135736758.
- Dunne, F. P. E.; Hayhurst, D. R. (1992-06-08). "Modelling of combined high-temperature creep and cyclic plasticity in components using continuum damage mechanics". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 437 (1901): 567–589. Bibcode:1992RSPSA.437..567D. doi:10.1098/rspa.1992.0080. S2CID 135555961.
- "16 May 1996". gazette.web.ox.ac.uk. Archived from the original on 2022-11-24. Retrieved 2022-11-24.
- "Professor Fionn Dunne". Hertford College | University of Oxford. Retrieved 2022-10-31.
- "Materials for fusion & fission power".
- "Micro-mechanical modelling techniques for forming texture, non-proportionality and failure in auto materials".
- "Micro-mechanical modelling techniques for forming texture, non-proportionality and failure in auto materials".
- "Heterogeneous Mechanics in Hexagonal Alloys across Length and Time Scales - UKRI".
- "MIDAS-UKRI".
- Dunne, Fionn; Petrinic, Nik (2005-06-09). Introduction to Computational Plasticity. OUP Oxford. ISBN 978-0-19-151380-0.
- Dunne, F. P. E.; Kiwanuka, R.; Wilkinson, A. J. (2012-09-08). "Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468 (2145): 2509–2531. Bibcode:2012RSPSA.468.2509D. doi:10.1098/rspa.2012.0050. S2CID 138764550.
- McDowell, D. L.; Dunne, F. P. E. (2010-09-01). "Microstructure-sensitive computational modeling of fatigue crack formation". International Journal of Fatigue. Emerging Frontiers in Fatigue. 32 (9): 1521–1542. doi:10.1016/j.ijfatigue.2010.01.003. ISSN 0142-1123.
- Chen, Bo; Jiang, Jun; Dunne, Fionn P. E. (2018-02-01). "Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?". International Journal of Plasticity. 101: 213–229. doi:10.1016/j.ijplas.2017.11.005. hdl:10044/1/61871. ISSN 0749-6419.
- Guan, Yongjun; Chen, Bo; Zou, Jinwen; Britton, T. Ben; Jiang, Jun; Dunne, Fionn P. E. (2017-01-01). "Crystal plasticity modelling and HR-DIC measurement of slip activation and strain localization in single and oligo-crystal Ni alloys under fatigue". International Journal of Plasticity. 88: 70–88. doi:10.1016/j.ijplas.2016.10.001. hdl:10044/1/41121. ISSN 0749-6419.
- Dunne, F. P. E.; Rugg, D.; Walker, A. (2007-06-01). "Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys". International Journal of Plasticity. 23 (6): 1061–1083. doi:10.1016/j.ijplas.2006.10.013. ISSN 0749-6419.
- Britton, T. B.; Liang, H.; Dunne, F. P. E.; Wilkinson, A. J. (2010-03-08). "The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 466 (2115): 695–719. Bibcode:2010RSPSA.466..695B. doi:10.1098/rspa.2009.0455. S2CID 2030079.
- Gong, Jicheng; Benjamin Britton, T.; Cuddihy, Mitchell A.; Dunne, Fionn P. E.; Wilkinson, Angus J. (2015-09-01). "〈a〉 Prismatic, 〈a〉 basal, and 〈c+a〉 slip strengths of commercially pure Zr by micro-cantilever tests". Acta Materialia. 96: 249–257. Bibcode:2015AcMat..96..249G. doi:10.1016/j.actamat.2015.06.020. hdl:10044/1/31552. ISSN 1359-6454.
- IOM3. "Award winners 2017". www.iom3.org. Retrieved 2022-10-31.
- "Previous winners | Staff | Imperial College London". www.imperial.ac.uk. Retrieved 2022-10-31.