Folate targeting

Folate targeting is a method utilized in biotechnology for drug delivery purposes. This Trojan Horse process, which was created by Drs. Christopher P. Leamon and Philip S. Low, involves the attachment of the vitamin, folate (folic acid), to a molecule/drug to form a "folate conjugate".[1] Based on the natural high affinity of folate for the folate receptor protein (FR), which is commonly expressed on the surface of many human cancers, folate-drug conjugates also bind tightly to the FR and trigger cellular uptake via endocytosis. Molecules as diverse as small radiodiagnostic imaging agents to large DNA plasmid formulations have successfully been delivered inside FR-positive cells and tissues.[2][3]

Background

Folic acid (FA, folate or vitamin B9), is a vital nutrient required by all living cells for nucleotide biosynthesis and for the proper metabolic maintenance of 1-carbon pathways.[4] Aside from its cofactor role for intracellular enzymes, FA also displays high affinity for the folate receptor (FR), a glycosylphosphatidyinositol-linked protein that captures its ligands from the extracellular milieu and transports them inside the cell via a non-destructive, recycling endosomal pathway.[5][6] The FR is also a recognized tumor antigen/biomarker.[7][8][9] Because of this, diagnostic and therapeutic methods which exploit the FR's function are being developed for cancer.

The FR is an emerging therapeutic target for diagnosis and treatment of cancer and chronic inflammatory diseases. Expression of the FR is selectively upregulated on certain malignant cells[10] and activated macrophages.[11] Overexpression of the FR on these types of cells is clinically significant because they designate areas where the physiological symptoms of disease are most extensive. The malignant cells indicate the presence of tumors associated with ovarian, lung, breast, kidney, brain, endometrial, and colon cancer.[12] Macrophages become activated in chronic diseases such as rheumatoid arthritis, Crohn's disease, ulcerative colitis, psoriasis, atherosclerosis, diabetes, and most other inflammatory diseases.[12]

From a mechanistic perspective, the FR functions to concentrate exogenous ligands (e.g. folates and folate-drug conjugates) into the cell cytosol by endocytosis.[6] The term endocytosis refers to the process whereby the plasma membrane invaginates and eventually forms a distinct intracellular compartment. The endocytic vesicles (endosomes) rapidly become acidified to allow the FR to release its ligand.[13] Afterwards, the empty FR returns to the cell surface where it can participate in another round of ligand-mediated endocytosis.[14]

The discovery of vitamin-mediated drug targeting in plants led to the hypothesis that folate-targeted therapies could be of clinical use.[12] After proteins covalently bonded to biotin were successfully transported into plant cells through receptor-mediated endocytosis, a similar technique was attempted with folate and animal cells.[12] Targeted drug therapy is advantageous because it deposits the drug at the specific location where it can be most useful in treating the disease. Similarly, folate-targeted imaging therapy helps visualize areas where the FR is expressed at higher levels. With greater control over where exogenous agents are delivered, diagnostic and treatment therapies are more effective and cause fewer side effects.

Methods of drug delivery

Specificity of folate conjugates for the FR has been shown by competition tests with free folate. When this ligand, known to bind the FR, is added in excess of the folate conjugate, it outcompetes the conjugate, indicating that the folate conjugate specifically binds the FR, and not other receptors, in the process of receptor-mediated endocytosis. Addition of an enzyme that frees the folate receptor from the cell membrane and addition of antibodies to the FR also reverse the internalization of folate conjugates, providing further evidence that folate conjugates bind the FR with specificity.[12]

While some drugs and radioimaging agents are delivered to cells as folate conjugates in a one-to-one folate-to-conjugate ratio, folate-targeted liposomes allow for the delivery of larger amounts of chemotherapeutic agents.[12] In this technique, drug particles are enveloped in a plasma membrane-bound vesicle. Folate is attached to polyethylene glycol bound to the phosphate heads of membrane phospholipids, thus directing the liposomes to FRs of tumor cells, by which they are engulfed.[12]

FR-positive cancer

Elevated expression of the FR occurs in many human malignancies, especially when associated with aggressively growing cancers.[9][15][16][17] Recently, it was proposed that this relationship may possibly be used for prognostic purposes.[17] Non-mucinous ovarian cancer (the majority of ovarian cancers) was the first tumor type to be associated with FR "over-expression",[9][18][19] and it was later shown that this antigen was identical to that found on KB tumor cells and in placental tissue.[7][9] Several studies confirmed that ~80-90% of ovarian tumors over-express the FR.[15][20][21] Other gynecological cancers also over-express the receptor[21][22][23][24][25] as well as pediatric ependymal brain tumors, mesothelioma, and breast, colon, renal and lung tumors.[20] The FR may also be found associated with cancer, particularly when related to myeloid leukemia and perhaps head and neck carcinomas.[26][27] Taken together, the total number of tumors that express the FR is very large; therefore, FR-targeted strategies could have significant impact on cancer treatment for patients diagnosed with FR-positive disease.

Diagnostics

The FR is expressed on many different types of malignant tissues and in large quantities.[20] But, not all human cancers within a particular indication will express the FR. Because novel FR-targeted therapies are now being tested clinically,[25][28][29][30][31][32][33] having the ability to screen patients for FR-positive disease could certainly increase the efficiency of and decrease the time for clinical investigations of these novel agents.

Currently, there are two principal methods that have been utilized for assessing a patient's "FR status". These include an invasive tissue-based immunohistochemical assay, and a non-invasive radiodiagnostic approach. The latter method is now being tested clinically using 99mTc-EC20.[34][35][36]

Folate-targeted chemotherapy

To date, four distinct FA-drug conjugates have entered clinical trials for the treatment of cancer:

Vintafolide (EC145) represents a novel water-soluble FA conjugate of the powerful microtubule destabilizing agent, desacetylvinblastine monohydrazide (DAVLBH; a derivative of the natural product, vinblastine).[37] EC145 was found to produce marked anti-tumor effect against well-established, subcutaneous FR-positive tumor xenografts using well tolerated regimens.[30] EC145 also represents the first FA-drug conjugate to be evaluated in clinical trials,[31] and it is currently (2009) being tested in a multi-national randomized Phase 2b trial in combination with pegylated liposomal doxorubicin (Doxil).

EC0225 represents the "first in class" multi-drug, FA-targeted agent to be reported. It is a molecule constructed with a single FA moiety and extended by a hydrophilic peptide-based spacer that is, in turn, linked to Vinca alkaloid and mitomycin units via 2 distinct disulfide-containing linkers.[29] Animals bearing well-established human tumor xenografts were found to completely respond to EC0225 therapy with dosing regimens that were approximately 3-fold less intensive to that required for EC145. A Phase 1 trial for EC0225 is in progress.

BMS-753493 is a molecule born from a collaboration between scientists at Endocyte Inc. and Bristol Myers Squibb (BMS). It represents a FA conjugate that was constructed with a semi-synthetic analog of Epothilone A.[32] BMS-753493 is currently being evaluated for safety and efficacy in Phase 2 clinical trials sponsored by BMS.

EC0489 is the latest folate-targeted chemotherapeutic to enter clinical trials sponsored by Endocyte. This molecule is actually a derivative of EC145 (see above) that was designed to have limited non-specific clearance properties through the liver. By reducing hepatic clearance, less drug will transit through the biliary excretion route; as a consequence, less off-target toxicities (predicted from preclinical tests) are expected.

Activated macrophage targeting

Macrophages are the human body's first line of defense against invading pathogens. Normally, they circulate in the bloodstream in a dormant state, but at a site of inflammation due to injury or autoimmune disease, they become activated, changing shape and expressing different cell surface markers.[11] The upregulated expression of the FR makes activated macrophages a useful tool in folate-targeted therapy. Activated, TNF-alpha producing macrophages express the beta isoform of the FR, and they are targetable with folate conjugates in vivo. For example, 99mTc-EC20 was reported to concentrate in the livers, spleens and arthritic extremities of adjuvant-induced arthritic rats via a folate-dependent mechanism.[38] Development of folate-drug conjugates for inflammation therapy is underway.[39] It is expected that ailments which harbor activated macrophages (such as arthritis, psoriasis and inflammatory bowel disease) may someday be treatable with folate-targeted medicines.

References

  1. Leamon CP, Low PS (July 1991). "Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis". Proc. Natl. Acad. Sci. U.S.A. 88 (13): 5572–6. doi:10.1073/pnas.88.13.5572. PMC 51919. PMID 2062838.
  2. Leamon CP (December 2008). "Folate-targeted drug strategies for the treatment of cancer". Curr Opin Investig Drugs. 9 (12): 1277–86. PMID 19037834.
  3. Low PS, Kularatne SA (June 2009). "Folate-targeted therapeutic and imaging agents for cancer". Curr Opin Chem Biol. 13 (3): 256–62. doi:10.1016/j.cbpa.2009.03.022. PMID 19419901.
  4. Clifford AJ, Arjomand A, Dueker SR, Schneider PD, Buchholz BA, Vogel JS (1998). "The Dynamics of Folic Acid Metabolism in an Adult Given a Small Tracer Dose of 14C-Folic Acid". Mathematical Modeling in Experimental Nutrition. Advances in Experimental Medicine and Biology. Vol. 445. pp. 239–51. doi:10.1007/978-1-4899-1959-5_15. ISBN 978-1-4899-1961-8. PMID 9781393.
  5. Luhrs CA, Slomiany BL (December 1989). "A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail". J. Biol. Chem. 264 (36): 21446–9. doi:10.1016/S0021-9258(20)88200-3. PMID 2557328.
  6. Kamen BA, Capdevila A (August 1986). "Receptor-mediated folate accumulation is regulated by the cellular folate content". Proc. Natl. Acad. Sci. U.S.A. 83 (16): 5983–7. doi:10.1073/pnas.83.16.5983. PMC 386421. PMID 3461471.
  7. Coney LR, Tomassetti A, Carayannopoulos L, et al. (November 1991). "Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein". Cancer Res. 51 (22): 6125–32. PMID 1840502.
  8. Weitman SD, Frazier KM, Kamen BA (1994). "The folate receptor in central nervous system malignancies of childhood". J. Neurooncol. 21 (2): 107–12. doi:10.1007/BF01052894. PMID 7861186. S2CID 20917087.
  9. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (October 1991). "Folate-binding protein is a marker for ovarian cancer". Cancer Res. 51 (19): 5329–38. PMID 1717147.
  10. Weitman, Steven; Richard Lark; Leslie Coney; Daniel Fort; Verna Frasca; Vincent Zurawski; Barton Kamen (15 June 1992). "Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues". Cancer Research. 52 (12): 3396–3401. PMID 1596899.
  11. Wei, Xia; Andrew Hilgenbrink; Eric Matteson; Michael Lockwood; Ji-Xin Cheng; Philip Low (24 October 2008). "A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages". Blood. 113 (2): 438–446. doi:10.1182/blood-2008-04-150789. PMID 18952896. S2CID 34195872.
  12. Low, Philip; Walter Henne; Derek Doorneweerd (3 April 2007). "Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases". Accounts of Chemical Research. 41 (1): 120–129. doi:10.1021/ar7000815. PMID 17655275.
  13. Lee RJ, Wang S, Low PS (July 1996). "Measurement of endosome pH following folate receptor-mediated endocytosis". Biochim. Biophys. Acta. 1312 (3): 237–42. doi:10.1016/0167-4889(96)00041-9. PMID 8703993.
  14. Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RG (September 1988). "Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles". J. Biol. Chem. 263 (27): 13602–9. doi:10.1016/S0021-9258(18)68284-5. PMID 3417674.
  15. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M (April 1997). "Overexpression of folate binding protein in ovarian cancers". Int. J. Cancer. 74 (2): 193–8. doi:10.1002/(SICI)1097-0215(19970422)74:2<193::AID-IJC10>3.0.CO;2-F. PMID 9133455.
  16. Toffoli G, Russo A, Gallo A, et al. (April 1998). "Expression of folate binding protein as a prognostic factor for response to platinum-containing chemotherapy and survival in human ovarian cancer". Int. J. Cancer. 79 (2): 121–6. doi:10.1002/(SICI)1097-0215(19980417)79:2<121::AID-IJC4>3.0.CO;2-V. PMID 9583724.
  17. Hartmann, L.C., Keeney, G.L., Lingle, W.L., Christianson, T.J., Varghese, B., Hillman, D., Oberg, A.L., and Low, P.S. (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. International journal of cancer 121, 938-942.
  18. Miotti, S., Canevari, S., Menard, S., Mezzanzanica, D., Porro, G., Pupa, S.M., Regazzoni, M., Tagliabue, E., and Colnaghi, M.I. (1987) Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. International journal of cancer 39, 297-303.
  19. Veggian R, Fasolato S, Ménard S, et al. (October 1989). "Immunohistochemical reactivity of a monoclonal antibody prepared against human ovarian carcinoma on normal and pathological female genital tissues". Tumori. 75 (5): 510–3. doi:10.1177/030089168907500524. PMID 2481353. S2CID 21203982.
  20. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (March 2005). "Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay". Anal. Biochem. 338 (2): 284–93. doi:10.1016/j.ab.2004.12.026. PMID 15745749.
  21. Wu M.; Gunning W.; Ratnam M. (1999). "Expression of folate receptor type a in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix". Cancer Epidemiology, Biomarkers & Prevention. 8: 775–783.
  22. Maziarz KM, Monaco HL, Shen F, Ratnam M (April 1999). "Complete mapping of divergent amino acids responsible for differential ligand binding of folate receptors alpha and beta". J. Biol. Chem. 274 (16): 11086–91. doi:10.1074/jbc.274.16.11086. PMID 10196192.
  23. Allard JE, Risinger JI, Morrison C, et al. (October 2007). "Overexpression of folate binding protein is associated with shortened progression-free survival in uterine adenocarcinomas". Gynecol. Oncol. 107 (1): 52–7. doi:10.1016/j.ygyno.2007.05.018. PMID 17582475.
  24. Dainty LA, Risinger JI, Morrison C, et al. (June 2007). "Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma". Gynecol. Oncol. 105 (3): 563–70. doi:10.1016/j.ygyno.2006.10.063. PMID 17400285.
  25. 21
  26. Ross JF, Chaudhuri PK, Ratnam M (May 1994). "Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications". Cancer. 73 (9): 2432–43. doi:10.1002/1097-0142(19940501)73:9<2432::AID-CNCR2820730929>3.0.CO;2-S. PMID 7513252.
  27. Ross JF, Wang H, Behm FG, et al. (January 1999). "Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia". Cancer. 85 (2): 348–57. doi:10.1002/(SICI)1097-0142(19990115)85:2<348::AID-CNCR12>3.0.CO;2-4. PMID 10023702.
  28. Konner JA, Ahmed S, Gerst S, Vander Els N, Pezzuli S, Sabbatini P, Hensley M, Dupont J, Tew W, Aghajanian C (June 20, 2006). "Phase I study of MORAb-003, a humanized anti-folate receptor-alpha monoclonal antibody, in platinum resistant ovarian cancer". J Clin Oncol. 24 (18S): 5027. doi:10.1200/jco.2006.24.18_suppl.5027.
  29. Leamon CP, Reddy JA, Vlahov IR, et al. (2007). "Preclinical antitumor activity of a novel folate-targeted dual drug conjugate". Mol. Pharm. 4 (5): 659–67. doi:10.1021/mp070049c. PMID 17874843.
  30. Reddy JA, Dorton R, Westrick E, et al. (May 2007). "Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate". Cancer Res. 67 (9): 4434–42. doi:10.1158/0008-5472.CAN-07-0033. PMID 17483358.
  31. Sausville E, LoRusso P, Quinn M, Forman K, Leamon C, Morganstern D, Bever S, Messmann R (June 20, 2007). "A phase I study of EC145 administered weeks 1 and 3 of a 4-week cycle in patients with refractory solid tumors". J Clin Oncol. 25 (18S): 2577. doi:10.1200/jco.2007.25.18_suppl.2577.
  32. Covello KL, Flefleh C, Menard K, Wiebesiek A, Mcglinchey K, Wen ML, Westhouse R, Reddy JA, Vlahov IR, Hunt J, et al. (April 12–16, 2008). "Preclinical pharmacology of epothilone-folate conjugate BMS-753493, a tumor-targeting agent selected for clinical development". Proceedings of the 99th Annual Meeting of AACR. San Diego, CA. Abstract #2326.
  33. Messmann R, Amato R, Hernandez-McClain J, Conley B, Rogers H, Lu J, Low P, Bever S, Morgenstern D (June 20, 2007). "A phase II study of FolateImmune (EC90 with GP1–0100 adjuvant followed by EC17) with low dose cytokines interleukin-2 (IL-2) and interferon-α (IFN-α) in patients with refractory or metastatic cancer". J Clin Oncol. 25 (18S): 13516. doi:10.1200/jco.2007.25.18_suppl.13516.
  34. Leamon CP, Parker MA, Vlahov IR, et al. (2002). "Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical". Bioconjug. Chem. 13 (6): 1200–10. doi:10.1021/bc0200430. PMID 12440854.
  35. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP (May 2004). "Preclinical evaluation of (99m)Tc-EC20 for imaging folate receptor-positive tumors". J. Nucl. Med. 45 (5): 857–66. PMID 15136637.
  36. Fisher RE, Siegel BA, Edell SL, et al. (June 2008). "Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors". J. Nucl. Med. 49 (6): 899–906. doi:10.2967/jnumed.107.049478. PMID 18483093.
  37. Leamon CP, Reddy JA, Vlahov IR, et al. (October 2007). "Comparative preclinical activity of the folate-targeted Vinca alkaloid conjugates EC140 and EC145". Int. J. Cancer. 121 (7): 1585–92. doi:10.1002/ijc.22853. PMID 17551919. S2CID 43354945.
  38. Turk MJ, Breur GJ, Widmer WR, et al. (July 2002). "Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis". Arthritis Rheum. 46 (7): 1947–55. doi:10.1002/art.10405. PMID 12124880.
  39. Yi YS, Ayala-López W, Kularatne SA, Low PS (July 2009). "Folate-targeted hapten immunotherapy of adjuvant-induced arthritis: comparison of hapten potencies". Mol. Pharm. 6 (4): 1228–36. doi:10.1021/mp900070b. PMID 19374407.
  • Amato, R.J., Fagbeyiro, B., Messmann, R., and Low, P.S. (2005) Phase I trial of EC90 (keyhole-limpet hemocyanin fluorescein isothiocyanate conjugate) with GPI-0100 adjuvant followed by EC17 (Folate-Fluorescein Isothiocyanate Conjugate) in Patients (pts) with metastatic renal cell carcinoma (MRCC). Journal of Clinical Oncology 23, 2590.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.