Isotopes of gadolinium
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.[5]
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Gd) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years. The majority of these have half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).
The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.
Gadolinium-153 has a half-life of 240.4 ± 10 days and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium.[6] It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[7]
Gadolinium-148 would be ideal for radioisotope thermoelectric generators due to its 87-year half-life, high density, and dominant alpha decay mode. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[8]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7][n 8] |
Spin and parity [n 9][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion | Range of variation | |||||||||||||||||
134Gd | 64 | 70 | 133.95537(43)# | 0.4# s | 0+ | ||||||||||||||
135Gd | 64 | 71 | 134.95257(54)# | 1.1(2) s | 3/2− | ||||||||||||||
136Gd | 64 | 72 | 135.94734(43)# | 1# s [>200 ns] | β+ | 136Eu | |||||||||||||
137Gd | 64 | 73 | 136.94502(43)# | 2.2(2) s | β+ | 137Eu | 7/2+# | ||||||||||||
β+, p (rare) | 136Sm | ||||||||||||||||||
138Gd | 64 | 74 | 137.94012(21)# | 4.7(9) s | β+ | 138Eu | 0+ | ||||||||||||
138mGd | 2232.7(11) keV | 6(1) µs | (8−) | ||||||||||||||||
139Gd | 64 | 75 | 138.93824(21)# | 5.7(3) s | β+ | 139Eu | 9/2−# | ||||||||||||
β+, p (rare) | 138Sm | ||||||||||||||||||
139mGd | 250(150)# keV | 4.8(9) s | 1/2+# | ||||||||||||||||
140Gd | 64 | 76 | 139.93367(3) | 15.8(4) s | β+ | 140Eu | 0+ | ||||||||||||
141Gd | 64 | 77 | 140.932126(21) | 14(4) s | β+ (99.97%) | 141Eu | (1/2+) | ||||||||||||
β+, p (.03%) | 140Sm | ||||||||||||||||||
141mGd | 377.8(2) keV | 24.5(5) s | β+ (89%) | 141Eu | (11/2−) | ||||||||||||||
IT (11%) | 141Gd | ||||||||||||||||||
142Gd | 64 | 78 | 141.92812(3) | 70.2(6) s | β+ | 142Eu | 0+ | ||||||||||||
143Gd | 64 | 79 | 142.92675(22) | 39(2) s | β+ | 143Eu | (1/2)+ | ||||||||||||
β+, α (rare) | 139Pm | ||||||||||||||||||
β+, p (rare) | 142Sm | ||||||||||||||||||
143mGd | 152.6(5) keV | 110.0(14) s | β+ | 143Eu | (11/2−) | ||||||||||||||
β+, α (rare) | 139Pm | ||||||||||||||||||
β+, p (rare) | 142Sm | ||||||||||||||||||
144Gd | 64 | 80 | 143.92296(3) | 4.47(6) min | β+ | 144Eu | 0+ | ||||||||||||
145Gd | 64 | 81 | 144.921709(20) | 23.0(4) min | β+ | 145Eu | 1/2+ | ||||||||||||
145mGd | 749.1(2) keV | 85(3) s | IT (94.3%) | 145Gd | 11/2− | ||||||||||||||
β+ (5.7%) | 145Eu | ||||||||||||||||||
146Gd | 64 | 82 | 145.918311(5) | 48.27(10) d | EC | 146Eu | 0+ | ||||||||||||
147Gd | 64 | 83 | 146.919094(3) | 38.06(12) h | β+ | 147Eu | 7/2− | ||||||||||||
147mGd | 8587.8(4) keV | 510(20) ns | (49/2+) | ||||||||||||||||
148Gd | 64 | 84 | 147.918115(3) | 86.9(39) y[9] | α | 144Sm | 0+ | ||||||||||||
149Gd | 64 | 85 | 148.919341(4) | 9.28(10) d | β+ | 149Eu | 7/2− | ||||||||||||
α (4.34×10−4%) | 145Sm | ||||||||||||||||||
150Gd | 64 | 86 | 149.918659(7) | 1.79(8)×106 y | α | 146Sm | 0+ | ||||||||||||
151Gd | 64 | 87 | 150.920348(4) | 124(1) d | EC | 151Eu | 7/2− | ||||||||||||
α (10−6%) | 147Sm | ||||||||||||||||||
152Gd[n 10] | 64 | 88 | 151.9197910(27) | 1.08(8)×1014 y | α[n 11] | 148Sm | 0+ | 0.0020(1) | |||||||||||
153Gd | 64 | 89 | 152.9217495(27) | 240.4(10) d | EC | 153Eu | 3/2− | ||||||||||||
153m1Gd | 95.1737(12) keV | 3.5(4) µs | (9/2+) | ||||||||||||||||
153m2Gd | 171.189(5) keV | 76.0(14) µs | (11/2−) | ||||||||||||||||
154Gd | 64 | 90 | 153.9208656(27) | Observationally Stable[n 12] | 0+ | 0.0218(3) | |||||||||||||
155Gd[n 13] | 64 | 91 | 154.9226220(27) | Observationally Stable[n 14] | 3/2− | 0.1480(12) | |||||||||||||
155mGd | 121.05(19) keV | 31.97(27) ms | IT | 155Gd | 11/2− | ||||||||||||||
156Gd[n 13] | 64 | 92 | 155.9221227(27) | Stable[n 15] | 0+ | 0.2047(9) | |||||||||||||
156mGd | 2137.60(5) keV | 1.3(1) µs | 7- | ||||||||||||||||
157Gd[n 13] | 64 | 93 | 156.9239601(27) | Stable[n 15] | 3/2− | 0.1565(2) | |||||||||||||
158Gd[n 13] | 64 | 94 | 157.9241039(27) | Stable[n 15] | 0+ | 0.2484(7) | |||||||||||||
159Gd[n 13] | 64 | 95 | 158.9263887(27) | 18.479(4) h | β− | 159Tb | 3/2− | ||||||||||||
160Gd[n 13] | 64 | 96 | 159.9270541(27) | Observationally Stable[n 16] | 0+ | 0.2186(19) | |||||||||||||
161Gd | 64 | 97 | 160.9296692(29) | 3.646(3) min | β− | 161Tb | 5/2− | ||||||||||||
162Gd | 64 | 98 | 161.930985(5) | 8.4(2) min | β− | 162Tb | 0+ | ||||||||||||
163Gd | 64 | 99 | 162.93399(32)# | 68(3) s | β− | 163Tb | 7/2+# | ||||||||||||
164Gd | 64 | 100 | 163.93586(43)# | 45(3) s | β− | 164Tb | 0+ | ||||||||||||
165Gd | 64 | 101 | 164.93938(54)# | 10.3(16) s | β− | 165Tb | 1/2−# | ||||||||||||
166Gd | 64 | 102 | 165.94160(64)# | 4.8(10) s | β− | 166Tb | 0+ | ||||||||||||
167Gd | 64 | 103 | 166.94557(64)# | 4.2(3) s | β− | 167Tb | 5/2−# | ||||||||||||
168Gd | 64 | 104 | 167.94836(75)# | 3.03(16) s | β− | 168Tb | 0+ | ||||||||||||
169Gd | 64 | 105 | 168.95287(86)# | 750(210) ms | β− | 169Tb | 7/2−# | ||||||||||||
170Gd | 64 | 106 | 675+94 −75 ms[10] |
β− | 170Tb | 0+ | |||||||||||||
171Gd | 64 | 107 | 392+145 −136 ms[10] |
β− | 171Tb | ||||||||||||||
172Gd | 64 | 108 | 163+113 −99 ms[10] |
β− | 172Tb | 0+ | |||||||||||||
This table header & footer: |
- mGd – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- Bold half-life – nearly stable, half-life longer than age of universe.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
EC: Electron capture IT: Isomeric transition - Bold italics symbol as daughter – Daughter product is nearly stable.
- Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- primordial radionuclide
- Theorized to also undergo β+β+ decay to 152Sm
- Believed to undergo α decay to 150Sm
- Fission product
- Believed to undergo α decay to 151Sm
- Theoretically capable of spontaneous fission
- Believed to undergo β−β− decay to 160Dy with a half-life over 1.3×1021 years
References
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. Elsevier BV. 194: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
- "Standard Atomic Weights: Gadolinium". CIAAW. 1969.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- F. A. Danevich; et al. (2001). "Quest for double beta decay of 160Gd and Ce isotopes". Nuclear Physics A. 694 (1–2): 375–391. arXiv:nucl-ex/0011020. Bibcode:2001NuPhA.694..375D. doi:10.1016/S0375-9474(01)00983-6. S2CID 11874988.
- "PNNL: Isotope Sciences Program – Gadolinium-153". pnl.gov. Archived from the original on 2009-05-27.
- "Gadolinium". BCIT Chemistry Resource Center. British Columbia Institute of Technology. Archived from the original on 23 August 2011. Retrieved 30 March 2011.
- Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009). Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. CiteSeerX 10.1.1.367.4042. doi:10.17226/12653. ISBN 978-0-309-13857-4.
- Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. Elsevier BV. 194: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
- Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.