Great retrosnub icosidodecahedron

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{32,53}.

Great retrosnub icosidodecahedron
TypeUniform star polyhedron
ElementsF = 92, E = 150
V = 60 (χ = 2)
Faces by sides(20+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol| 2 3/2 5/3
Symmetry groupI, [5,3]+, 532
Index referencesU74, C90, W117
Dual polyhedronGreat pentagrammic hexecontahedron
Vertex figure
(34.5/2)/2
Bowers acronymGirsid
3D model of a great retrosnub icosidodecahedron

Cartesian coordinates

Cartesian coordinates for the vertices of a great retrosnub icosidodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(αβτ−1/τ), ±(α/τ+βτ), ±(−ατβ/τ−1)),
(±(ατβ/τ+1), ±(−αβτ+1/τ), ±(−α/τ+β+τ)),
(±(ατβ/τ−1), ±(α+βτ+1/τ), ±(−α/τ+βτ)) and
(±(αβτ+1/τ), ±(−α/τβτ), ±(−ατβ/τ+1)),

with an even number of plus signs, where

α = ξ−1/ξ

and

β = −ξ/τ+1/τ2−1/(ξτ),

where τ = (1+5)/2 is the golden mean and ξ is the smaller positive real root of ξ3−2ξ=−1/τ, namely

Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. Taking the odd permutations with an even number of plus signs or vice versa results in the same two figures rotated by 90 degrees.

The circumradius for unit edge length is

where is the appropriate root of . The four positive real roots of the sextic in

are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

See also

References

  1. Maeder, Roman. "74: great retrosnub icosidodecahedron". MathConsult.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.