Sexual system

A sexual system is a pattern of sex allocation[1] or a distribution of male and female function across organisms in a species.[2] Terms like reproductive system and mating system have also been used as synonyms.[3]

The distinction between sexual systems is not always clear due to phenotypic plasticity.[1] Sexual systems are viewed as a key factor for genetic variation and reproductive success, and may have also led to the origin or extinction of certain species.[4]

Interests in sexual systems go back to Darwin, who found that barnacles contain species that are androdioecious and some that are dioecious.[5]

Types of sexual systems

In angiosperms there are monomorphic sexual systems where a species has combination of hermaphrodite, male, and/or female flowers on the same plant. Monomorphic sexual systems include monoecy, gynomonoecy, andromonoecy, and trimonoecy. There are also dimorphic sexual systems where individual plants within a species only produce one sort of flower — hermaphrodite, male, or female. Dimorphic sexual systems include dioecy, gynodioecy, androdioecy, and trioecy.[6] Mixed sexual systems are where hermaphrodites coexist with single sexed individuals.[7] This includes androdioecy, gynodioecy, and trioecy.[8]

What determines whether a flower is male, female, or hermaphroditic is the presence of a stamen — which contains male gametes — and/or pistil — which contains female gametes. Male (a.k.a. staminate) flowers only have a stamen. Female (a.k.a. pistillate) flowers only have a pistil. Hermaphrodite (a.k.a. perfect, or bisexual) flowers have both a stamen and pistil. The sex of a single flower may differ from the sex of the whole organism: for example, a plant may have both staminate and pistillate flowers, making the plant as a whole a hermaphrodite. Hence although all monomorphic plants are hermaphrodites, different combinations of flower types (staminate, pistillate, or perfect) produces distinct monomorphic sexual systems.[9]

(See Plant reproductive morphology for further details on plant sexual systems.)

List of sexual systems

Sexual systemDescription
Androdioecymales and hermaphrodites coexist in a population.[10] It is rare in both plants and animals.[11]
Andromonoecyrare sexual system in angiosperms, in which a plant has both male and hermaphroditic flowers.[12] It has been a subject of interest regarding the mechanism of sex expression.[13]
Dichogamyan individual plant produces either exclusively male or exclusively female flowers at different points in time.[14] It is thought the temporal separation of producing male and female flowers occurs to prevent self-fertilization,[15] however this is debatable as dichogamy occurs in similar frequency among species which are self-compatible and self-incompatible.[16]
Dioicyone of the two main sexual systems in bryophytes.[17] In dioicy male and female sex organs are on separate gametophytes.[18]
Dioecya species has distinct individual organisms that are either male or female, i.e., they produce only male or only female gametes, either directly (in animals) or indirectly (in plants).[19]
Gonochorismindividuals are either male or female.[19]

The term "gonochorism" is usually applied to animals while "dioecy" is applied to plants.[20] Gonochorism is the most common sexual system in animals, occurring in 95% of animal species.[21]

Gynodioecyfemales and hermaphrodites coexist in the same population.[10]
Gynomonoecydefined as the presence of both female and hermaphrodite flowers on the same individual of a plant species.[22] It is prevalent in Asteraceae but is poorly understood.[23]
Gynodioecy-Gynomonoecya sexual system for plants when female, hermaphrodite, and gynomonoecious plants coexist in the same population.[24]:360
Monoicyone of the two main sexual systems in bryophytes.[17] In monoicy male and female sex organs are present in the same gametophyte.[18]
Monoecya sexual system in which male and female flowers are present on the same plant. It is common in angiosperms,[25] and occurs in 10% of all plant species.[26]
Sequential hermaphroditismindividuals start their adult lives as one sex, and change to the other sex at a later age.[27]
Sequential monoecya confusing sexual system,[28] in which the combination of male, female, and hermaphrodite flowers presented changes over time.[29] For example, some conifers produce exclusively either male or female cones when young, then both when older.[30] Sequential monoecy can be difficult to differentiate from dioecy.[31] Several alternative terms may be used in reference to sexual systems involving temporal changes to sex presentation of a plant species (e.g. dichogamy, sequential hermaphroditism, sex change, paradioecy, diphasy).[32]
Simultaneous hermaphroditisman individual can produce both gamete types in the same breeding season.[33] Simultaneous hermaphroditism is one of the most common sexual systems in animals (though far less common than gonochorism) and is one of the most stable.[34]
Synoecyall individuals in a population of flowering plants bear solely hermaphrodite flowers.[27]
Trioecymales, females, and hermaphrodites exist in the same population.[8] It is present in both plants and animals but is always extremely rare.[35] Trioecy occurs in about 3.6% of flowering plants.[36] Trioecy may infrequently be referred to as tridioecy.[37]
Trimonoecy(also called androgynomonoecy) is when male, female, and hermaphrodite flowers are present on the same plant.[27][38] Triomonoecy is rare.[39]

References

  1. Leonard JL (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. p. 1. ISBN 978-3-319-94139-4.
  2. Encyclopedia of Animal Behavior. Vol. 4. Academic Press. 2019-01-21. p. 584. ISBN 978-0-12-813252-4.
  3. Cardoso, João Custódio Fernandes; Viana, Matheus Lacerda; Matias, Raphael; Furtado, Marco Túlio; Caetano, Ana Paula de Souza; Consolaro, Hélder; Brito, Vinícius Lourenço Garcia de (Jul–Sep 2018). "Towards a unified terminology for angiosperm reproductive systems". Acta Botanica Brasilica. 32 (3): 329–348. doi:10.1590/0102-33062018abb0124. ISSN 0102-3306. S2CID 91470660.
  4. Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL (April 2017). "Macroevolutionary synthesis of flowering plant sexual systems". Evolution; International Journal of Organic Evolution. 71 (4): 898–912. doi:10.1111/evo.13181. PMID 28085192. S2CID 19562183.
  5. Yusa Y, Yoshikawa M, Kitaura J, Kawane M, Ozaki Y, Yamato S, Høeg JT (March 2012). "Adaptive evolution of sexual systems in pedunculate barnacles". Proceedings. Biological Sciences. 279 (1730): 959–66. doi:10.1098/rspb.2011.1554. PMC 3259936. PMID 21881138.
  6. Torices R, Méndez M, Gómez JM (April 2011). "Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms". The New Phytologist. 190 (1): 234–248. doi:10.1111/j.1469-8137.2010.03609.x. PMID 21219336.
  7. Leonard J, Cordoba-Aguilar A (2010-07-19). The Evolution of Primary Sexual Characters in Animals. Oxford University Press, USA. pp. 29–30. ISBN 978-0-19-532555-3.
  8. Oyarzún PA, Nuñez JJ, Toro JE, Gardner J (2020). "Trioecy in the Marine Mussel Semimytilus algosus (Mollusca, Bivalvia): Stable Sex Ratios Across 22 Degrees of a Latitudinal Gradient". Frontiers in Marine Science. 7. doi:10.3389/fmars.2020.00348. ISSN 2296-7745.
  9. Jabbour, Florian; Espinosa, Felipe; Dejonghe, Quentin; Le Péchon, Timothée (2022-01-07). "Development and Evolution of Unisexual Flowers: A Review". Plants. 11 (2): 155. doi:10.3390/plants11020155. ISSN 2223-7747.
  10. Fusco G, Minelli A (2019-10-10). The Biology of Reproduction. Cambridge University Press. pp. 132–133. ISBN 978-1-108-49985-9.
  11. Pontarotti P (2011-07-20). Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer Science & Business Media. p. 36. ISBN 978-3-642-20763-1.
  12. Casimiro-Soriguer R, Herrera J, Talavera S (March 2013). "Andromonoecy in an Old World Papilionoid legume, Erophaca baetica". Plant Biology. 15 (2): 353–9. doi:10.1111/j.1438-8677.2012.00648.x. PMID 22823201.
  13. Pugnaire F, Valladares F (2007-06-20). Functional Plant Ecology. CRC Press. p. 524. ISBN 978-1-4200-0762-6.
  14. Lloyd, David G.; Webb, C. J. (1986-07-01). "The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy". New Zealand Journal of Botany. 24 (1): 135–162. doi:10.1080/0028825X.1986.10409725. ISSN 0028-825X.
  15. Renner, Susanne S. (2014-10-01). "The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database". American Journal of Botany. 101 (10): 1588–1596. doi:10.3732/ajb.1400196.
  16. Bertin, Robert I. (1993-05-01). "INCIDENCE OF MONOECY AND DICHOGAMY IN RELATION TO SELF-FERTILIZATION IN ANGIOSPERMS". American Journal of Botany. 80 (5): 557–560. doi:10.1002/j.1537-2197.1993.tb13840.x.
  17. Ramawat KG, Merillon JM, Shivanna KR (2016-04-19). Reproductive Biology of Plants. CRC Press. p. 62. ISBN 978-1-4822-0133-8.
  18. Villarreal JC, Renner SS (November 2013). "Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants". BMC Evolutionary Biology. 13 (1): 239. doi:10.1186/1471-2148-13-239. PMC 4228369. PMID 24180692.
  19. King RC, Stansfield WD, Mulligan PK (2007). "Gonochorism". A Dictionary of Genetics. Oxford University Press. doi:10.1093/acref/9780195307610.001.0001. ISBN 978-0-19-530761-0. Retrieved 2021-07-28.
  20. Encyclopedia of Evolutionary Biology. Vol. 2. Academic Press. 2016-04-14. p. 212. ISBN 978-0-12-800426-5.
  21. Leonard JL (October 2013). "Williams' paradox and the role of phenotypic plasticity in sexual systems". Integrative and Comparative Biology. 53 (4): 671–88. doi:10.1093/icb/ict088. PMID 23970358.
  22. Allaby M (2006). "Gynomonoecious". A Dictionary of Plant Sciences. Oxford University Press. doi:10.1093/acref/9780198608912.001.0001. ISBN 978-0-19-860891-2.
  23. Martínez-Gómez P (2019-07-11). Plant Genetics and Molecular Breeding. MDPI. p. 442. ISBN 978-3-03921-175-3.
  24. Lüttge, Ulrich; Cánovas, Francisco M.; Matyssek, Rainer (2016-05-27). Progress in Botany 77. Springer. ISBN 978-3-319-25688-7.
  25. Bahadur B, Sujatha M, Carels N (2012-12-14). Jatropha, Challenges for a New Energy Crop: Volume 2: Genetic Improvement and Biotechnology. Springer Science & Business Media. pp. 27–28. ISBN 978-1-4614-4915-7.
  26. Willmer P (2011-07-05). Pollination and Floral Ecology. Princeton University Press. p. 85. ISBN 978-1-4008-3894-3.
  27. Beentje, Henk (2016). The Kew Plant Glossary (second ed.). Richmond, Surrey: Royal Botanic Gardens, Kew. ISBN 978-1-84246-604-9.
  28. Putz, Francis E.; Mooney, Harold A. (1991). The Biology of Vines. Cambridge University Press. p. 411. ISBN 978-0-521-39250-1.
  29. Flores‐Rentería, Lluvia; Molina‐Freaner, Francisco; Whipple, Amy V.; Gehring, Catherine A.; Domínguez, C. A. (2013-03-01). "Sexual stability in the nearly dioecious Pinus johannis (Pinaceae)". American Journal of Botany. 100 (3): 602–612. doi:10.3732/ajb.1200068. ISSN 0002-9122.
  30. Kang, Hyesoon (2007-04-01). "Changes in gender expression in korean populations ofPinus densiflora over a five-year period". Journal of Plant Biology. 50 (2): 181–189. doi:10.1007/BF03030628. ISSN 1867-0725.
  31. Greenwood, Paul J.; Greenwood, Greenwood, Paul John; Harvey, Paul H.; Harvey, Reader in Biology Department of Zoology Paul H.; Slatkin, Montgomery; Slatkin, Professor of Integrative Biology Montgomery; Cambridge, University of (1985-07-11). Evolution: Essays in Honour of John Maynard Smith. CUP Archive. p. 240. ISBN 978-0-521-25734-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  32. Windsor, Jon and Lesley Lovett-Doust Professor of Biology the University of (1988-07-07). Plant Reproductive Ecology : Patterns and Strategies: Patterns and Strategies. Oxford University Press, USA. ISBN 978-0-19-802192-6.
  33. Leonard, Janet L. (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. p. 14. ISBN 978-3-319-94139-4.
  34. Leonard J, Cordoba-Aguilar A (2010-07-19). The Evolution of Primary Sexual Characters in Animals. Oxford University Press, USA. p. 20. ISBN 978-0-19-532555-3.
  35. Leonard JL (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. p. 23. ISBN 978-3-319-94139-4.
  36. Albert B, Morand-Prieur MÉ, Brachet S, Gouyon PH, Frascaria-Lacoste N, Raquin C (October 2013). "Sex expression and reproductive biology in a tree species, Fraxinus excelsior L". Comptes Rendus Biologies. 336 (10): 479–85. doi:10.1016/j.crvi.2013.08.004. PMID 24246889.
  37. Heikrujam, Monika; Sharma, Kuldeep; Prasad, Manoj; Agrawal, Veena (2015-01-01). "Review on different mechanisms of sex determination and sex-linked molecular markers in dioecious crops: a current update". Euphytica. 201 (2): 161–194. doi:10.1007/s10681-014-1293-z. ISSN 1573-5060.
  38. Atwell BJ, Kriedemann PE, Turnbull CG (1999). Plants in Action: Adaptation in Nature, Performance in Cultivation. Macmillan Education AU. p. 244. ISBN 978-0-7329-4439-1.
  39. Cardoso-Gustavson P, Demarco D, Carmello-Guerreiro SM (2011-08-06). "Evidence of trimonoecy in Phyllanthaceae: Phyllanthus acidus". Plant Systematics and Evolution. 296 (3): 283–286. doi:10.1007/s00606-011-0494-3. ISSN 1615-6110. S2CID 13226982.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.