Half-integer
In mathematics, a half-integer is a number of the form
where is a whole number. For example,
are all half-integers. The name "half-integer" is perhaps misleading, as the set may be misunderstood to include numbers such as 1 (being half the integer 2). A name such as "integer-plus-half" may be more accurate, but even though not literally true, "half integer" is the conventional term. Half-integers occur frequently enough in mathematics and in quantum mechanics that a distinct term is convenient.
Note that halving an integer does not always produce a half-integer; this is only true for odd integers. For this reason, half-integers are also sometimes called half-odd-integers. Half-integers are a subset of the dyadic rationals (numbers produced by dividing an integer by a power of two).[1]
Notation and algebraic structure
The set of all half-integers is often denoted
The integers and half-integers together form a group under the addition operation, which may be denoted[2]
However, these numbers do not form a ring because the product of two half-integers is not a half-integer; e.g. [3] The smallest ring containing them is , the ring of dyadic rationals.
Properties
- The sum of half-integers is a half-integer if and only if is odd. This includes since the empty sum 0 is not half-integer.
- The negative of a half-integer is a half-integer.
- The cardinality of the set of half-integers is equal to that of the integers. This is due to the existence of a bijection from the integers to the half-integers: , where is an integer
Uses
Sphere packing
The densest lattice packing of unit spheres in four dimensions (called the D4 lattice) places a sphere at every point whose coordinates are either all integers or all half-integers. This packing is closely related to the Hurwitz integers: quaternions whose real coefficients are either all integers or all half-integers.[4]
Physics
In physics, the Pauli exclusion principle results from definition of fermions as particles which have spins that are half-integers.[5]
The energy levels of the quantum harmonic oscillator occur at half-integers and thus its lowest energy is not zero.[6]
Sphere volume
Although the factorial function is defined only for integer arguments, it can be extended to fractional arguments using the gamma function. The gamma function for half-integers is an important part of the formula for the volume of an n-dimensional ball of radius ,[7]
The values of the gamma function on half-integers are integer multiples of the square root of pi:
where denotes the double factorial.
References
- Sabin, Malcolm (2010). Analysis and Design of Univariate Subdivision Schemes. Geometry and Computing. Vol. 6. Springer. p. 51. ISBN 9783642136481.
- Turaev, Vladimir G. (2010). Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Vol. 18 (2nd ed.). Walter de Gruyter. p. 390. ISBN 9783110221848.
- Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002). Computability and Logic. Cambridge University Press. p. 105. ISBN 9780521007580.
- Baez, John C. (2005). "Review On Quaternions and Octonions: Their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith". Bulletin of the American Mathematical Society (book review). 42: 229–243. doi:10.1090/S0273-0979-05-01043-8.
- Mészáros, Péter (2010). The High Energy Universe: Ultra-high energy events in astrophysics and cosmology. Cambridge University Press. p. 13. ISBN 9781139490726.
- Fox, Mark (2006). Quantum Optics: An introduction. Oxford Master Series in Physics. Vol. 6. Oxford University Press. p. 131. ISBN 9780191524257.
- "Equation 5.19.4". NIST Digital Library of Mathematical Functions. U.S. National Institute of Standards and Technology. 6 May 2013. Release 1.0.6.