Halperin conjecture
In rational homotopy theory, the Halperin conjecture concerns the Serre spectral sequence of certain fibrations. It is named after the Canadian mathematician Stephen Halperin.
Statement
Suppose that is a fibration of simply connected spaces such that is rationally elliptic and (i.e., has non-zero Euler characteristic), then the Serre spectral sequence associated to the fibration collapses at the page.[1]
Status
As of 2019, Halperin's conjecture is still open. Gregory Lupton has reformulated the conjecture in terms of formality relations.[2]
Notes
- Berglund
- Lupton
References
- Berglund, Alexander (2012), Rational homotopy theory (PDF)
- Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude (1993), "Elliptic spaces II", L'Enseignement Mathématique, doi:10.5169/seals-60412, MR 1225255
- Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude (2001), Rational Homotopy Theory, New York: Springer Nature, doi:10.1007/978-1-4613-0105-9, ISBN 0-387-95068-0, MR 1802847
- Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude (2015), Rational Homotopy Theory II, Singapore: World Scientific, doi:10.1142/9473, ISBN 978-981-4651-42-4, MR 3379890
- Félix, Yves; Oprea, John; Tanré, Daniel (2008), Algebraic Models in Geometry, Oxford: Oxford University Press, ISBN 978-0-19-920651-3, MR 2403898
- Griffiths, Phillip A.; Morgan, John W. (1981), Rational Homotopy Theory and Differential Forms, Boston: Birkhäuser, ISBN 3-7643-3041-4, MR 0641551
- Hess, Kathryn (1999), "A history of rational homotopy theory", in James, Ioan M. (ed.), History of Topology, Amsterdam: North-Holland, pp. 757–796, doi:10.1016/B978-044482375-5/50028-6, ISBN 0-444-82375-1, MR 1721122
- Hess, Kathryn (2007), "Rational homotopy theory: a brief introduction" (PDF), Interactions between Homotopy Theory and Algebra, Contemporary Mathematics, vol. 436, American Mathematical Society, pp. 175–202, arXiv:math/0604626, doi:10.1090/conm/436/08409, ISBN 9780821838143, MR 2355774
- Lupton, Gregory (1997), "Variations on a conjecture of Halperin", Homotopy and Geometry (Warsaw, 1997), arXiv:math/0010124, MR 1679854
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.