Hesse normal form
The Hesse normal form named after Otto Hesse, is an equation used in analytic geometry, and describes a line in or a plane in Euclidean space or a hyperplane in higher dimensions.[1][2] It is primarily used for calculating distances (see point-plane distance and point-line distance).
![](../I/Hesse_normalenform.svg.png.webp)
It is written in vector notation as
The dot indicates the scalar product or dot product. Vector points from the origin of the coordinate system, O, to any point P that lies precisely in plane or on line E. The vector represents the unit normal vector of plane or line E. The distance is the shortest distance from the origin O to the plane or line.
Derivation/Calculation from the normal form
Note: For simplicity, the following derivation discusses the 3D case. However, it is also applicable in 2D.
In the normal form,
a plane is given by a normal vector as well as an arbitrary position vector of a point . The direction of is chosen to satisfy the following inequality
By dividing the normal vector by its magnitude , we obtain the unit (or normalized) normal vector
and the above equation can be rewritten as
Substituting
we obtain the Hesse normal form
![](../I/Ebene_Hessesche_Normalform.PNG.webp)
In this diagram, d is the distance from the origin. Because holds for every point in the plane, it is also true at point Q (the point where the vector from the origin meets the plane E), with , per the definition of the Scalar product
The magnitude of is the shortest distance from the origin to the plane.
References
- Bôcher, Maxime (1915), Plane Analytic Geometry: With Introductory Chapters on the Differential Calculus, H. Holt, p. 44.
- John Vince: Geometry for Computer Graphics. Springer, 2005, ISBN 9781852338343, pp. 42, 58, 135, 273