Holographic grating

A holographic grating is a type of diffraction grating formed by an interference-fringe field of two laser beams whose standing-wave pattern is exposed to a set of photosensitive materials.[1][2] The exposure triggers chemical processes within the sample and results in the formation of a periodic structure that has the same periodicity of the recorded pattern. One of the most interesting features of these structures is their versatility and tunability as the optical response strongly depends on the blend of used materials, and their interactions with light during, and after, the recording procedure.

With the expertise earned over the years, nowadays holographic gratings are very efficient with no notable difference when compared to mechanically ruled gratings. Nevertheless, the lower limit over the grating spacing is one order of magnitude smaller than the latter. Their availability, low cost, and versatility opened the path for their use in a various range of applications such as data storage,[3] holographic display[4][5] and in general, as holographic optical components.[1][6][7]

References

  • * Palmer, Christopher, Diffraction Grating Handbook, 8th edition, MKS Newport (2020)
  1. Hadden, Elhoucine; Iso, Yuko; Kume, Atsushi; Umemoto, Koichi; Jenke, Tobias; Fally, Martin; Klepp, Jürgen; Tomita, Yasuo (2022-05-24). "Nanodiamond-based nanoparticle-polymer composite gratings with extremely large neutron refractive index modulation". In McLeod, Robert R; Tomita, Yasuo; Sheridan, John T; Pascual Villalobos, Inmaculada (eds.). Photosensitive Materials and their Applications II. Vol. 12151. SPIE. pp. 70–76. Bibcode:2022SPIE12151E..09H. doi:10.1117/12.2623661. ISBN 9781510651784. S2CID 249056691.
  2. AK Yetisen; H Butt; F da Cruz Vasconcellos; Y Montelongo; CAB Davidson; J Blyth; JB Carmody; S Vignolini; U Steiner; JJ Baumberg; TD Wilkinson; CR Lowe (2013). "Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors". Advanced Optical Materials. 2 (3): 250–254. doi:10.1002/adom.201300375. S2CID 96257175.
  3. Hu, Po; Li, Jinhong; Jin, Junchao; Lin, Xiao; Tan, Xiaodi (2022-05-11). "Highly Sensitive Photopolymer for Holographic Data Storage Containing Methacryl Polyhedral Oligomeric Silsesquioxane". ACS Applied Materials & Interfaces. 14 (18): 21544–21554. doi:10.1021/acsami.2c04011. ISSN 1944-8244. PMC 9100513. PMID 35486469.
  4. Wang, Xiaoyu; Zhang, Hao (2022-07-22). "Diffraction characteristics of digital micro-mirror device in holographic display". In Liu, Juan; Jia, Baohua; Yao, Xincheng; Wang, Yongtian; Cao, Liangcai; Nomura, Takanori (eds.). 2021 International Conference on Optical Instruments and Technology: Optical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology. Vol. 12277. SPIE. pp. 202–207. Bibcode:2022SPIE12277E..0TW. doi:10.1117/12.2615606. ISBN 9781510655591. S2CID 251031226.
  5. Lv, Zhenlv; Liu, Juan; Xu, Liangfa (2022-07-22). "A multi-depth augmented reality head-up display system using holographic optical elements". In Liu, Juan; Jia, Baohua; Yao, Xincheng; Wang, Yongtian; Cao, Liangcai; Nomura, Takanori (eds.). 2021 International Conference on Optical Instruments and Technology: Optical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology. Vol. 12277. SPIE. pp. 40–43. Bibcode:2022SPIE12277E..08L. doi:10.1117/12.2619460. ISBN 9781510655591. S2CID 251030064.
  6. Sokolov, P.P.; Vorzobova, N.D. (June 2022). "Diffractive holographic elements for solar energy". 2022 International Conference Laser Optics (ICLO). p. 1. doi:10.1109/ICLO54117.2022.9840267. ISBN 978-1-6654-6663-9. S2CID 251472447.
  7. E Hadden; Y Iso; A Kume; K Umemoto; T Jenke; M Fally; J Klepp; Y Tomita (2022). "HIGHLY EFFICIENT HOLOGRAPHIC OPTICAL ELEMENTS FOR COLD NEUTRON EXPERIMENTS". doi:10.13140/RG.2.2.26033.04963. {{cite journal}}: Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.