Homeric Minimum

The Homeric Minimum is a grand solar minimum that took place between 2,800 and 2,550 years Before Present (c. 800–600 BC). It appears to coincide with, and have been the cause of, a phase of climate change at that time, which involved a wetter Western Europe and drier eastern Europe. This had far-reaching effects on human civilization, some of which may be recorded in Greek mythology and the Old Testament.

Solar phenomenon

The Homeric Minimum is a persistent and deep[1][2] solar minimum that took place between 2,800 and 2,550 years Before Present,[3] starting around 830 BCE[4] and resembling the Spörer Minimum.[5] It is sometimes named "Great Solar Minimum".[6] It has been subdivided into a stronger minimum at 2,750-2,635 years before present and a secondary minimum 2,614-2,594 years before present.[7] The Homeric Minimum is sometimes considered to be part of a longer "Hallstattzeit" solar minimum between 705–200 BC that also includes a second minimum between 460 and 260 BC.[8] The Homeric Minimum however also coincided with a geomagnetic excursion named "Etrussia-Sterno", which may have altered the climate response to the Homeric Minimum.[9] The name "Homeric Minimum" however is not widely accepted in solar physics.[10]

Mechanisms of climate effects

Variations in the solar output have effects on climate, less through the usually quite small effects on insolation and more through the relatively large changes of UV radiation and potentially also indirectly through modulation of cosmic ray radiation. The 11-year solar cycle measurably alters the behaviour of weather and atmosphere, but decadal and centennial climate cycles are also attributed to solar variation.[3]

Effects on human populations and climate

Debates on whether a climatic deterioration occurred during that time began already in the late 19th century.[11] The Homeric Minimum has been linked with a phase of climate change,[12] during which the Western United States,[13] Europe became colder[14] but whether it became drier or wetter is under debate;[15] the western parts and the North Atlantic may have become wetter[16] and the eastern parts of Europe drier.[17] This climate oscillation has been called the "Homeric Climate Oscillation"[12] or the "2.8 kyr event",[18] and it has been associated with the Iron Age Cold Epoch,[19] the decline of the Urartu kingdom in Armenia[20] and a cultural interruption in Ireland although its effect there is still debated.[11]

Human cultures at that time underwent changes,[12] which also coincide with the transition from the Bronze Age to the Iron Age.[21] The climate fallout of this prolonged solar minimum may have had substantial impact on human societies at that time,[22] with a recovery of societies after its end.[23] Increased precipitation over the Eurasian steppes during the Homeric Minimum may have benefitted the Skythes there, however.[24]

It has been speculated that some ancient literary references refer to these phenomena. For example, the period saw the growth of a glacier on Mount Olympus, while Greek mythology and Homer refer to ice and storms on the mountain, which may also be reflected in the name "Olympus".[25] Increased activity of the polar lights at the end of the Homeric Minimum may have inspired Ezekiel's vision of God in the Old Testament.[26]

a stormy wind ... out of the north ... with brightness around it, and fire flashing forth ... as it were gleaming metal ... an expanse, shining like awe-inspiring crystal.

Other effects

A variety of phenomena have been linked to the Homeric Minimum:

References

  1. Geel et al. 2012, p. 401.
  2. Landscheidt, T. (1987). "Long-range forecasts of solar cycles and climate change". In Rampino, M.; Sanders, J.; Newman, W.; Konigsson, L. (eds.). Climate History, Periodicity, and Predictability. New York: van Nostrand Reinhold. p. 428.
  3. Geel et al. 2012, p. 397.
  4. Kilian, Van der Plicht & Van Geel 1995, p. 962.
  5. Kilian, Van der Plicht & Van Geel 1995, p. 959.
  6. Giovanni, Zanchetta; Ilaria, Baneschi; Michel, Magny; Laura, Sadori; Rosa, Termine; Monica, Bini; Boris, Vannière; Marc, Desmet; Stefano, Natali; Marco, Luppichini; Francesca, Pasquetti (October 2022). "Insight into summer drought in southern Italy: palaeohydrological evolution of Lake Pergusa (Sicily) in the last 6700 years". Journal of Quaternary Science. 37 (7): 1288. Bibcode:2022JQS....37.1280G. doi:10.1002/jqs.3435. ISSN 0267-8179. S2CID 249325599.
  7. Harding et al. 2022, p. 2.
  8. Davis, Jirikowic & Kalin 1992, p. 23.
  9. Raspopov, O. M.; Dergachev, V. A.; Gus'kova, E. G.; Kolstrom, T. (2004-12-01). "Development of the Maunder Type of Solar Activity and Their Climatic Response". AGU Fall Meeting Abstracts. 43: U43A–0739. Bibcode:2004AGUFM.U43A0739R.
  10. Silverman, Sam M.; Hayakawa, Hisashi (2021). "The Dalton Minimum and John Dalton's Auroral Observations". Journal of Space Weather and Space Climate. 11: 3. arXiv:2012.13713. Bibcode:2021JSWSC..11...17S. doi:10.1051/swsc/2020082. ISSN 2115-7251. S2CID 229678780.
  11. Gearey et al. 2020, p. 2.
  12. Rach et al. 2017, p. 45.
  13. Davis, Jirikowic & Kalin 1992, pp. 27–28.
  14. Lampe, Reinhard; Lampe, Matthias (1 April 2021). "The role of sea-level changes in the evolution of coastal barriers – An example from the southwestern Baltic Sea". The Holocene. 31 (4): 525. Bibcode:2021Holoc..31..515L. doi:10.1177/0959683620981703. ISSN 0959-6836. S2CID 232291038.
  15. Cortizas, Antonio Martínez; Sjöström, Jenny K.; Ryberg, Eleonor E.; Kylander, Malin E.; Kaal, Joeri; López-Costas, Olalla; Fernández, Noemi Álvarez; Bindler, Richard (2021). "9000 years of changes in peat organic matter composition in Store Mosse (Sweden) traced using FTIR-ATR". Boreas. 50 (4): 1174. doi:10.1111/bor.12527. hdl:10347/26626. ISSN 1502-3885. S2CID 235550072.
  16. Rach et al. 2017, p. 44.
  17. Słowiński, Michał; Marcisz, Katarzyna; Płóciennik, Mateusz; Obremska, Milena; Pawłowski, Dominik; Okupny, Daniel; Słowińska, Sandra; Borówka, Ryszard; Kittel, Piotr; Forysiak, Jacek; Michczyńska, Danuta J.; Lamentowicz, Mariusz (November 2016). "Drought as a stress driver of ecological changes in peatland – A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 461: 287. Bibcode:2016PPP...461..272S. doi:10.1016/j.palaeo.2016.08.038. ISSN 0031-0182.
  18. Laurenz, Ludger; Lüdecke, Horst-Joachim; Lüning, Sebastian (1 April 2019). "Influence of solar activity changes on European rainfall". Journal of Atmospheric and Solar-Terrestrial Physics. 185: 30. Bibcode:2019JASTP.185...29L. doi:10.1016/j.jastp.2019.01.012. ISSN 1364-6826. S2CID 126769397.
  19. Kylander, Malin E.; Söderlindh, Jenny; Schenk, Frederik; Gyllencreutz, Richard; Rydberg, Johan; Bindler, Richard; Martínez Cortizas, Antonio; Skelton, Alasdair (30 August 2019). "It's in your glass: a history of sea level and storminess from the Laphroaig bog, Islay (southwestern Scotland)". Boreas. 49: 12. doi:10.1111/bor.12409.
  20. Robles, Mary; Peyron, Odile; Brugiapaglia, Elisabetta; Ménot, Guillemette; Dugerdil, Lucas; Ollivier, Vincent; Ansanay-Alex, Salomé; Develle, Anne-Lise; Tozalakyan, Petros; Meliksetian, Khachatur; Sahakyan, Kristina; Sahakyan, Lilit; Perello, Bérengère; Badalyan, Ruben; Colombié, Claude; Joannin, Sébastien (1 February 2022). "Impact of climate changes on vegetation and human societies during the Holocene in the South Caucasus (Vanevan, Armenia): A multiproxy approach including pollen, NPPs and brGDGTs". Quaternary Science Reviews. 277: 20. Bibcode:2022QSRv..27707297R. doi:10.1016/j.quascirev.2021.107297. ISSN 0277-3791. S2CID 245487278.
  21. Mauquoy, Dmitri; van Geel, Bas; Blaauw, Maarten; Speranza, Alessandra; van der Plicht, Johannes (27 July 2016). "Changes in solar activity and Holocene climatic shifts derived from 14C wiggle-match dated peat deposits" (PDF). The Holocene. 14 (1): 49. Bibcode:2004Holoc..14...45M. doi:10.1191/0959683604hl688rp. S2CID 126763553.
  22. Ogurtsov, M. G.; Zaitseva, G. I.; Dergachev, V. A.; Raspopov, O. M. (1 December 2013). "Deep solar activity minima, sharp climate changes, and their impact on ancient civilizations". Geomagnetism and Aeronomy. 53 (8): 920. Bibcode:2013Ge&Ae..53..917R. doi:10.1134/S0016793213080227. ISSN 1555-645X. S2CID 121037707.
  23. Pratt, Catherine E. (2021). Oil, Wine, and the Cultural Economy of Ancient Greece: From the Bronze Age to the Archaic Era. Cambridge: Cambridge University Press. p. 31. ISBN 978-1-108-83564-0.
  24. Brooke, John L. (2014). Climate Change and the Course of Global History: A Rough Journey. Cambridge: Cambridge University Press. p. 324. doi:10.1017/cbo9781139050814. ISBN 978-1-139-05081-4.
  25. Styllas, Michael N.; Schimmelpfennig, Irene; Benedetti, Lucilla; Ghilardi, Mathieu; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim (August 2018). "Late-glacial and Holocene history of the northeast Mediterranean mountain glaciers – New insights from in situ -produced 36 Cl – based cosmic ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece" (PDF). Quaternary Science Reviews. 193: 262. Bibcode:2018QSRv..193..244S. doi:10.1016/j.quascirev.2018.06.020. ISSN 0277-3791. S2CID 133757376.
  26. Siscoe, George L.; Silverman, Samuel M.; Siebert, Keith D. (2002). "Ezekiel and the Northern Lights: Biblical aurora seems plausible". Eos, Transactions American Geophysical Union. 83 (16): 3. Bibcode:2002EOSTr..83..173S. doi:10.1029/2002eo000113. ISSN 0096-3941.
  27. Geel et al. 2012, p. 398.
  28. Rach et al. 2017, p. 52.
  29. Kilian, Van der Plicht & Van Geel 1995, p. 965.
  30. Lampe, Matthias; Lampe, Reinhard (2018). "Evolution of a large Baltic beach ridge plain (Neudarss, NE Germany): A continuous record of sea-level and wind-field variation since the Homeric Minimum". Earth Surface Processes and Landforms. 43 (15): 3049. Bibcode:2018ESPL...43.3042L. doi:10.1002/esp.4468. ISSN 1096-9837. S2CID 134663052.
  31. Harding et al. 2022, p. 9.
  32. Martín-Chivelet, J.; Edwards, R. L.; Muñoz-García, M. B.; Gómez, P.; Sánchez, L.; Garralón, A.; Ortega, A. I.; Marín-Roldán, A.; Cáceres, J. O.; Turrero, M. J.; Cruz, J. A. (1 December 2015). "Long-term hydrological changes in northern Iberia (4.9–0.9 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain)" (PDF). Environmental Earth Sciences. 74 (12): 7751. Bibcode:2015EES....74.7741C. doi:10.1007/s12665-015-4687-x. hdl:10261/118315. ISSN 1866-6299. S2CID 127349575.
  33. Rach et al. 2017, p. 50.
  34. Davis, Jirikowic & Kalin 1992, p. 29.
  35. Park, Jinheum; Jin, Qiuhong; Choi, Jieun; Bahk, Junbeom; Park, Jungjae (15 December 2021). "Late Holocene climate variability in central Korea indicated by vegetation, geochemistry, and fire records of the Yongneup moor". Palaeogeography, Palaeoclimatology, Palaeoecology. 584: 110705. Bibcode:2021PPP...584k0705P. doi:10.1016/j.palaeo.2021.110705. ISSN 0031-0182. S2CID 244609113.
  36. Tan, Liangcheng; Li, Yanzhen; Wang, Xiqian; Cai, Yanjun; Lin, Fangyuan; Cheng, Hai; Ma, Le; Sinha, Ashish; Edwards, R. Lawrence (2020). "Holocene Monsoon Change and Abrupt Events on the Western Chinese Loess Plateau as Revealed by Accurately Dated Stalagmites". Geophysical Research Letters. 47 (21): 1. Bibcode:2020GeoRL..4790273T. doi:10.1029/2020GL090273. ISSN 1944-8007. S2CID 228865093.
  37. Sun, Zhe; Yuan, Kan; Hou, Xiaohuan; Ji, Kejia; Li, Can-Ge; Wang, Mingda; Hou, Juzhi (1 August 2020). "Centennial-scale interplay between the Indian Summer Monsoon and the Westerlies revealed from Ngamring Co, southern Tibetan Plateau". The Holocene. 30 (8): 1169. Bibcode:2020Holoc..30.1163S. doi:10.1177/0959683620913930. ISSN 0959-6836. S2CID 219064656.
  38. Neugebauer et al. 2015, p. 1358.
  39. Neugebauer et al. 2015, pp. 1358–1359.
  40. Neugebauer et al. 2015, p. 1368.
  41. Brown, Antony G.; Toms, Phillip S.; Carey, Chris J.; Howard, Andy J.; Challis, Keith (2013). "Late Pleistocene–Holocene river dynamics at the Trent-Soar confluence, England, UK". Earth Surface Processes and Landforms. 38 (3): 10. Bibcode:2013ESPL...38..237B. doi:10.1002/esp.3270. ISSN 1096-9837. S2CID 128587671.
  42. Rimbu, N.; Lohmann, G.; Ionita, M.; Czymzik, M.; Brauer, A. (2021). "Interannual to millennial-scale variability of River Ammer floods and its relationship with solar forcing". International Journal of Climatology. 41 (S1): 651. doi:10.1002/joc.6715. ISSN 1097-0088. S2CID 225555744.
  43. Gearey et al. 2020, p. 17.
  44. Kronig, Olivia; Ivy-Ochs, Susan; Hajdas, Irka; Christl, Marcus; Wirsig, Christian; Schlüchter, Christian (1 April 2018). "Holocene evolution of the Triftje- and the Oberseegletscher (Swiss Alps) constrained with 10Be exposure and radiocarbon dating". Swiss Journal of Geosciences. 111 (1): 127. doi:10.1007/s00015-017-0288-x. ISSN 1661-8734. S2CID 134721101.
  45. Yang, Yang; Maselli, Vittorio; Normandeau, Alexandre; Piper, David J. W.; Li, Michael Z.; Campbell, D. Calvin; Gregory, Taylor; Gao, Shu (16 October 2020). "Latitudinal Response of Storm Activity to Abrupt Climate Change During the Last 6,500 Years". Geophysical Research Letters. 47 (19): 8. Bibcode:2020GeoRL..4789859Y. doi:10.1029/2020GL089859. S2CID 224965025.

Sources

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.