Honeywell/ITEC F124

The Honeywell/ITEC F124 is a low-bypass turbofan engine derived from the civilian Honeywell TFE731. The F125 is an afterburning version of the engine. The engine began development in the late 1970s for the Republic of China (Taiwan) Air Force AIDC F-CK Indigenous Defence Fighter (IDF), and it first ran in 1979. The F124/F125 engine has since been proposed for use on other aircraft, such as the T-45 Goshawk and the SEPECAT Jaguar, and currently powers the Aero L-159 Alca and the Alenia Aermacchi M-346. The F124 has a rather unusual design for a two spool gas turbine engine, using both axial and centrifugal compressors in its high-pressure compressor. There are currently only three production variants of the engine, although several more have been proposed throughout its lifespan.

F124 / F125
Honeywell F124 cutaway
Type Turbofan
National origin United States /
Taiwan (Republic of China)
Manufacturer International Turbine Engine Corporation / Honeywell
First run 1979 [1]
Major applications Aermacchi M-346
Aero L-159 Alca
AIDC F-CK-1 Ching-kuo
AIDC T-5 Brave Eagle
Number built 460 (by 2004) [1]
Developed from Honeywell TFE731

Development

In 1978, Garrett announced joint research on the TFE1042 afterburner with Swedish company Volvo Flygmotor AB in order to provide an engine for the AIDC F-CK Indigenous Defence Fighter (IDF) being developed for the Republic of China (Taiwan) Air Force (ROCAF). The TFE731 Model 1042 was touted as a low bypass ratio "military derivative of the proven commercial TFE731 engine" and "provides efficient, reliable, cost effective propulsion for the next generation of light strike and advanced trainer aircraft", with thrust of 4260 lbf (18.9 kN) dry and 6790 lbf (30.2 kN) with afterburner. After initial negotiation, the investment was going to be divided between Garrett, Volvo, AIDC, and Italian company Piaggio. The development would consist of the non-afterburning TFE1042-6 for light attack aircraft/advanced trainer, and TFE1042-7 for the AMX or F-5 upgrade. Garrett would be responsible for the core engine, and Volvo would be responsible for the fan section and the afterburner. The engine first ran for 3 hours at a Volvo test facility in 1979.[1]

AIDC also suggested upgrading TFE1042-7 to 8000 lbf (31 to 36 kN) thrust as twin engine solution, in order to compete with General Electric F404 for applications such as the JAS 39 Gripen. However, the Gripen project decided to continue with a single engine F404 variant, built by Volvo, and Volvo left the project to at that point to focus on the Gripen work. Piaggio asked to participate at a later date due to financial reasons and left the program as well. Thus only Garrett and AIDC invested in the new International Turbine Engine Corporation (ITEC), with the contract signed in 1982.[1]

In 1988, ITEC decided to invest in the 12,000 lb TFE1088-12, which was re-designated as TFE1042-70A (for political reason as well). Preliminary study had shown that IDF could supercruise with the new engine. At the same time, GE decided to enter the market with J101/SF, a smaller version of F404. However, after the IDF order was cut in half due to budget concerns, the TFE1088-12 engine upgrade plan ended as well.[2] The F-CK IDF first flew in 1989, and aircraft were delivered through 1999.[1]

Garrett introduced the TFE742 concept in the early 1990s. Consisting of an uprated core from the TFE1042, the TFE742 was promoted for a twin-engine version of the BAe 146, the MPC 75, and other prospective aircraft.[3] Targeting the 70-130 seat passenger aircraft market, the TFE742 was a 18,000 lbf thrust (80 kN; 8,200 kgf), high-bypass turbofan driven by a gearbox.[4]

In the mid-1990s, AlliedSignal considered developing a turboprop engine for the European Future Large Aircraft military transport (later known as the Airbus A400M), which was to be based on the core of the TFE1042.[5][6] AlliedSignal, AIDC, and other Asian partners also derived an industrial gas turbine from the TFE1042, initially as the 12,000-horsepower (9-megawatt) AS1042,[7] which evolved into the 13,000 hp (10 MW) ASE120.[8]

T-45 Goshawk / BAE Systems Hawk

In the early 1990s, the United States Navy considered the re-engining their fleet of T-45 Goshawk trainer aircraft with the F124. In 1994, after flight testing a T-45 with the engine, the USN elected not to.[1]

The possibility of a F124-powered T-45 arose again in 1996 when McDonnell Douglas offered an F124-engined T-45 to the Royal Australian Air Force as a competitor for their trainer requirement.[9] BAe wanted to offer the F124 as an option on their entry for the RAAF trainer requirement, the BAE Hawk (which the T-45 is based on), but ITEC refused to give BAe permission to offer it.[10] ITEC's decision turned out to be a mistake, as the RAAF select the Hawk as their trainer. However, after the selection of the aircraft, the RAAF decided to have a separate competition between the F124 and the Rolls-Royce Turbomeca Adour (which was BAe's selection) to power the new trainers.[11] In 1997 the RAAF elected to use the Adour engine, effectively ending the F124's chances of being used on Hawk or T-45 aircraft.[12]

L-159

In 1994, the F124 engine was selected to power the Czech Aero L-159 Alca light combat aircraft. The combination first flew in 1997.[1]

M-346

In 2000, Alenia Aermacchi announced that their new M-346 trainer/light attack aircraft would be powered by the F124 engine, choosing it over its common rival, the Adour.[13] In 2009, the United Arab Emirates announced that their M-346 trainers would be powered by the F124-GA-200.[14]

X-45A

The F124 engine powered the Boeing X-45A unmanned combat aerial vehicle demonstrator in the early 2000s.[15]

T-5 Brave Eagle

In 2017 the Aerospace Industrial Development Corporation announced that their AIDC T-5 Brave Eagle would use a variant of the F124.[16]

Possible Jaguar usage

Honeywell's F125 engine for IAF Jaguar at Aero India 2013

The afterburning F125 engine was being considered, in 2009, by the Indian Air Force as a replacement for the Rolls-Royce Turbomeca Adour engines in their SEPECAT Jaguar aircraft. The new engine would be both lighter and more powerful. It was successfully demonstrated in 2007.[17] This proposal of Indian Air Force to up-engine its fleet of SEPECAT Jaguar ground attack aircraft stalled after a decade in August 2019 owing to the high cost involved. Jane's quoted that Honeywell quoted a price of USD2.4 billion 18,500 crore (equivalent to 230 billion or US$3 billion in 2023) for 180 F-125IN turbofan engines as replacements for the Rolls-Royce Turbomeca Adour Mk 811 powerpacks originally installed in the Jaguars.[18]

Design

The F124 engine is a low-bypass, two-spool engine (meaning that there are two rotating shafts, a high-pressure shaft and a low-pressure shaft). The fan/low-pressure compressor has three stages with titanium blades. The first stage has 30 blades,[19] and the overall pressure ratio for the three-stage fan is 2.5:1. Some of the air is bypassed (Bypass ratio of 0.472:1), and the rest is fed to the high-pressure compressor.[1]

The high-pressure compressor (HPC) has four axial stages and a fifth centrifugal stage. All the blades and the impeller are made from titanium.[1]

The fuel is burned in an annular combustor and the core flow passes through a single-stage high-pressure turbine (HPT) followed by a single-stage low-pressure turbine. The HPT is air-cooled. The bypass air from the fan and the exhaust from the core are mixed before exiting through a common nozzle. In the F125 variant of the engine, the mixed flow passes through the afterburner section. The F124 does not have an afterburner.[1]

Variants

F124-GA-100
  • This is the original variant of the engine. It powered the Boeing X-45 demonstrator.
F124-GA-200
  • Slightly de-rated variant of the F124-GA-100; the maximum thrust is 6250 lbf (27.80 kN) and the engine weighs 28 lb (13 kg) less.[20] This variant utilizes an all-new accessory gearbox, as well as other small upgrades.[19] This variant is used in the Aermacchi M-346.[21]
F124-GA-400
F125-GA-100
  • Also known as the TFE1042-70. This is the basic afterburning variant of the engine. 325 produced for the AIDC F-CK-1 Ching-kuo program.[22]
F125X
  • Proposed advanced variant of the F125 engine, with a maximum thrust of 12,500 lbf (56 kN).[23]
F125XX
  • Further advanced variant of the F125 engine, this one producing 16,400 lbf (73 kN) of thrust. If it were built, there would have been a related F124XX non-afterburning variant, producing 10,800 lbf (48 kN) of thrust.[23]
Vega Project
  • Taiwan NCSIST has formulated a plan for the "Vega Project" since 2014 to develop a propulsion system based on the needs of a new generation of fighters after 2020, but the overall budget is not large, and the initial stage is mainly based on evaluation, and in 2016, the board of directors of the Chinese Academy of Sciences approved the application for the annual national defense key technology research and development donation subsidy, and reported it to the Taiwan National Defense Armaments Bureau for construction. Since the TFE-1042-70 engine was funded and owned by the Republic of China, the "Vega Star" program was developed on this basis. [24] The director of the general discipline department of Taiwan Air Force Aviation Technology College said that after the successful development of the AIDC F-CK-1 Ching-kuo fighter, Taiwan Air Force Aviation Technology College has the number 1011~1014 (TFE-1042) engine, in order to cooperate with the Air Force to develop the next generation of fighters. Reverse engineer engine No.1014 to develop a next-generation engine. [25]

Applications

F124
F125

Specifications (F124-GA-100)

Data from [20][26]

General characteristics

  • Type: Turbofan
  • Length: 102.1 in (259 cm)
  • Diameter: 36 in (91.4 cm)
  • Dry weight: 1050 lb (521.6 kg)

Components

  • Compressor: 3 axial fan (low pressure compressor) stages, 4 axial high pressure compressor stages, 1 centrifugal high pressure compressor stage
  • Turbine: 1 stage high pressure turbine, 1 stage low pressure turbine

Performance

See also

Related development

Comparable engines

Related lists

References

  1. Honeywell F124 (TFE1042). Forecast International. Archived Jul 2005. Accessed 22 Dec 2009.
  2. Hua, Hsi-Chun (1997). Story of Yun Han (in Chinese). China Productivity Center.
  3. "Twin-engine BAe 146 tweaks interest at Garrett". Regional Aviation Weekly. Vol. 5, no. 28. July 13, 1990. p. 264. ISSN 1044-9450 via Factiva.
  4. Moorman, Robert W. (March 1992). "Following the signal; the winds of change continue to blow over Allied-Signal subsidiary, engine maker Garrett". Air Transport World. Vol. 29, no. 3. pp. 36+. ISSN 0002-2543. Gale A12033269.
  5. Macrae, Duncan; Sutton, Oliver (March 1996). "Getting Europe's new airlifter on the rails". Special report. Airlift: The new priority. Interavia. Vol. 51, no. 598. pp. 32–34. ISSN 1423-3215.
  6. Schwarz, Karl (February 1997). "FLA funding still in the balance". Flug Revue. p. 53. ISSN 0015-4547. Archived from the original on October 3, 2007.
  7. Kandebo, Stanley W. (July 8, 1996). "F124 engine delivered for T-45 flight test". Aviation Week & Space Technology. Vol. 145, no. 2. pp. 30–31. ISSN 0005-2175. OCLC 192776129.
  8. Valenti, Michael (August 1, 1997). "New gas turbine designs push the envelope". Mechanical Engineering. Vol. 119, no. 8. pp. 58–61. ISSN 0025-6501. OCLC 4433219930. OSTI 522403 via The Free Library.
  9. .Warwick, Graham (1996). "F124 powers Australian T-45 bid".Flight International. 7 Feb 1996. Accessed 23 Dec 2009.
  10. Norris, Guy (1996). "ITEC turns down BAe on RAAF". Flight International. 3 Apr 1996, p. 5. Accessed 23 Dec 2009.
  11. "BAe's Hawk trainer chosen for RAAF's lead-in fighter project", Flight International. 20 Nov 1996, p. 22. Accessed 23 Dec 2009.
  12. Lewis, Paul and Phelan, Paul (1997). "RAAF stays with Adour on Hawk". Flight International. 5 Mar 1997, p. 14. Accessed 23 Dec 2009.
  13. "F124 engine turns Yak-130 into the Aermacchi 346". Flight International. 25 Jul 2000, p. 8. Accessed 23 Dec 2009.
  14. Govindasamy, Siva (2009). "Dubai 09: UAE selects Honeywell's F124 engines for M-346 fleet". Flight Daily News. 16 Nov 2009. Accessed 23 Dec 2009.
  15. "Military Engine Directory". Flight International. 8 May 2001, p. 56. Accessed 23 Dec 2009.
  16. Grevatt, Jon. "Taiwan starts production of XAT-5 prototype". janes.com. Janes. Retrieved 8 May 2019.
  17. Honeywell to Give Indian Air Force's Jaguar Fighter Aircraft Superior Mission Capability (2009). India Defense. 18 Feb 2009. Accessed 22 Dec 2009.
  18. "Engine upgrade for Indian Jaguars stalls". Jane's 360. 21 August 2019. Retrieved 3 September 2019.
  19. ITEC TFE1042-70. Jane's Aero Engines. Last Updated 30 Apr 2009. Accessed 22 Dec 2009.
  20. F124. Honeywell F-124 page Archived 2015-01-08 at the Wayback Machine. Accessed 22 Dec 2009.
  21. Dubai 09: UAE selects Honeywell's F124 engines for M-346 fleet (2009). Flight Global. 16 Nov 2009. Accessed 22 Dec 2009.
  22. Pocock, Chris. "AIDC aims for greater role as aerospace sector supplier". www.ainonline.com. AIN Online. Retrieved 8 August 2019.
  23. "ITEC ready to start F125X turbofan". Flight International. 8 Apr 1992, p. 13. Accessed 23 Dec 2009.
  24. Chinese Academy of Sciences Vega Project Exposure R&D Fighter Engine. United Daily News. 2016-04-19.
  25. Ching-kuo engine reverse engineering to build the heart of Indigenous aircraft design and building. NOWnews. 2018-10-31.
  26. Gas Turbine Engines. Aviation Week & Space Technology Source Book 2009. p. 119.
  27. Samuel, P.; Lenertz, J.E.; Bain, D.B.; Mowill, R.J. (June 2–5, 1997). Development of a dry low emission combustor for the ASE120 industrial gas turbine engine (PDF). International Gas Turbine & Aeroengine Congress & Exhibition. Vol. 2: Coal, biomass and alternative fuels, combustion and fuels, oil and gas applications, cycle innovations. Orlando, Florida, U.S.A.: American Society of Mechanical Engineers (ASME). doi:10.1115/97-GT-478. ISBN 978-0-7918-7869-9. OCLC 7344708326.
  28. Meier, Nathan. "Military Turbojet/Turbofan Specifications". jet-engine.net. Archived from the original on 2022-12-27. Retrieved 2022-12-27.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.