Hsiang–Lawson's conjecture
In mathematics, Lawson's conjecture states that the Clifford torus is the only minimally embedded torus in the 3-sphere S3.[1][2] The conjecture was featured by the Australian Mathematical Society Gazette as part of the Millennium Problems series.[3]
In March 2012, Simon Brendle gave a proof of this conjecture, based on maximum principle techniques.[4]
References
- Lawson, H. Blaine, Jr. (1970). "The unknottedness of minimal embeddings". Invent. Math. 11 (3): 183–187. Bibcode:1970InMat..11..183L. doi:10.1007/BF01404649. S2CID 122740925.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Lawson, H. Blaine, Jr. (1970). "Complete minimal surfaces in S3". Ann. of Math. 92 (3): 335–374. doi:10.2307/1970625. JSTOR 1970625.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Norbury, Paul (2005). "The 12th problem" (PDF). The Australian Mathematical Society Gazette. 32 (4): 244–246.
- Brendle, Simon (2013). "Embedded minimal tori in S3 and the Lawson conjecture". Acta Mathematica. 211 (2): 177–190. doi:10.1007/s11511-013-0101-2. S2CID 119317563.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.