Ján Mináč

Ján Mináč (born 15 June 1953) is a Canadian mathematician who is a professor of mathematics at The University of Western Ontario. His research interests include Galois groups, Galois cohomology, quadratic forms, and nonlinear dynamics.

Ján Mináč
Ján Mináč
Born (1953-06-15) 15 June 1953
NationalityCanadian
Alma materQueen's University
Scientific career
FieldsMathematics
Institutions
ThesisGalois Groups, Order Spaces, and Valuations (1986)
Doctoral advisorPaulo Ribenboim

Early life and education

Mináč received his bachelor's degree and his master's level RNDr. degree from from Comenius University, Czechoslovakia in 1976 and 1977 respectively. He then earned his Ph.D. in 1986 from Queen’s University in Canada under the supervision of Paulo Ribenboim. The title of his thesis is "Galois Groups, Order Spaces, and Valuations".[1]

His brother Matej Mináč is a film director.

Career

Mináč was a member of Mathematical Sciences Research Institute at Berkeley from 1986 to 1987 and then an NSF Postdoctoral Fellow at the University of California at Berkeley from 1987 to 1989. Afterward, he joined the University of Western Ontario as an assistant professor in 1989. He became an associate professor in 1991 and a full professor in 2003.[2]

Research

Mináč and Nguyễn Duy Tân formulated the Mináč-Tân conjectures on the vanishing of Massey products over fields and the kernel unipotent conjecture.[3][4][5] He has also worked on Galois theory and quadratic forms,[6] Galois Demushkin groups,[7][8] mild pro-2-groups,[9] Galois modules,[10] small quotients of Absolute Galois groups,[11][12][13] ghosts in group cohomology,[14] Koszulity properties of Galois cohomology,[15][16] and Zassenhaus filtrations.[17][18][19]

Mináč has also worked on non-linear dynamics in networks and its applications to computational neuroscience.[20]

Awards

Mináč received the Distinguished Research Professor Award at Western University during the years 2004-2005 and 2020-2021.[21][22] In 2019, he became a Fellow of the Canadian Mathematical Society.[23] During the year 2022-2023, he was a fellow at the Western Academy for Advanced Research.[24] In 2013 he received an Excellence in Teaching Award from the Canadian Mathematical Society.[25] Mináč also received multiple teaching awards at the University of Western Ontario.

References

  1. "The Mathematics Genealogy Project - Ján Mináč". Genealogy.math.ndsu.nodak.edu. Retrieved 16 August 2023.
  2. "Short Curriculum Vitae" (PDF). Ján Mináč. Retrieved 11 September 2023.
  3. Mináč, Ján; Tân, Nguyễn Duy (2016). "Triple Massey products and Galois theory". Journal of the European Mathematical Society. 19 (1): 255–284. doi:10.4171/JEMS/665.
  4. Mináč, Ján; Tân, Nguyễn Duy (2015). "The kernel unipotent conjecture and the vanishing of Massey products for odd rigid fields". Advances in Mathematics. 273: 242–270. doi:10.1016/j.aim.2014.12.028.
  5. Harpaz, Yonathan; Wittenberg, Olivier (2023). "The Massey vanishing conjecture for number fields". Duke Mathematical Journal. 172 (1): 1–41. arXiv:1904.06512. doi:10.1215/00127094-2022-0004. S2CID 119302870.
  6. Mináč, Ján; Spira, Michel (July 1996). "Witt Rings and Galois Groups". Annals of Mathematics. Second series. 144 (1): 35–60. doi:10.2307/2118582. JSTOR 2118582.
  7. Mináč, Ján; Ware, Roger (1991). "Demušhkin groups of rank ℵ0 as absolute galois groups". Manuscripta Mathematica. 73 (1). doi:10.1007/BF02567651. S2CID 120744288.
  8. Mináč, Ján; Ware, Roger (1992). "Pro-2-Demushkin groups of rank ℵ0 as Galois groups of maximal 2-extensions of fields". Mathematische Annalen. 292 (1): 337–353. doi:10.1007/BF01444625. S2CID 122586183.
  9. Labute, John; Mináč, Ján (2011). "Mild pro-2-groups and 2-extensions of Q with restricted ramification". Journal of Algebra. 332 (1): 136–158. doi:10.1016/j.jalgebra.2011.01.019.
  10. Bhandari, Ganesh; Lemire, Nicole; Mináč, Ján; Swallow, John (2008). "Galois module structure of Milnor K-theory in characteristic p" (PDF). New York Journal of Mathematics. 14: 225–233. arXiv:math/0405503.
  11. Chebolu, Sunil K.; Efrat, Ido; Mináč, Ján (2012). "Quotients of absolute Galois groups which determine the entire Galois cohomology". Mathematische Annalen. 352: 205–221. arXiv:0905.1364. doi:10.1007/s00208-011-0635-6. S2CID 253718241.
  12. Efrat, Ido; Mináč, Ján (2011). "On the descending central sequence of absolute Galois groups". American Journal of Mathematics. 133 (6): 1503–1532. arXiv:0809.2166. doi:10.1353/ajm.2011.0041. JSTOR 41302044. S2CID 767659.
  13. Efrat, Ido; Mináč, Ján (2017). "Galois groups and cohomological functors". Transactions of the American Mathematical Society. 369 (4): 2697–2720. arXiv:1103.1508. doi:10.1090/tran/6724.
  14. Chebolu, Sunil K.; Christensen, J. Daniel; Mináč, Ján (2008). "Ghosts in modular representation theory". Advances in Mathematics. 217 (6): 2782–2799. doi:10.1016/j.aim.2007.11.008.
  15. Mináč, Ján; Palaisti, Marina; Pasini, Federico W.; Tân, Nguyễn Duy (2020). "Enhanced Koszul properties in Galois cohomology". Research in the Mathematical Sciences. 7 (2): 10. arXiv:1811.09272. doi:10.1007/s40687-020-00208-5. S2CID 256432978.
  16. Mináč, Jan; Pasini, Federico William; Quadrelli, Claudio; Tân, Nguyễn Duy (2021). "Koszul algebras and quadratic duals in Galois cohomology". Advances in Mathematics. 380: 107569. arXiv:1808.01695. doi:10.1016/j.aim.2021.107569. S2CID 119654585.
  17. Guillot, Pierre; Mináč, Ján; Topaz, Adam; Wittenberg, Olivier (2018). "Four-fold Massey products in Galois cohomology". Compositio Mathematica. 154 (9): 1921–1959. arXiv:1610.05748. doi:10.1112/S0010437X18007297. S2CID 119702737.
  18. Mináč, Ján; Rogelstad, Michael; Tân, Nguyễn Duy (2016). "Dimensions of Zassenhaus filtration subquotients of some pro-p-groups". Israel Journal of Mathematics. 212 (2): 825–855. arXiv:1405.6980. doi:10.1007/s11856-016-1310-0. S2CID 255436070.
  19. Mináč, Ján; Rogelstad, Michael; Tân, Nguyễn Duy (2020). "Relations in the maximal pro-𝑝 quotients of absolute Galois groups". Transactions of the American Mathematical Society. 373 (4): 2499–2524. doi:10.1090/tran/8003. S2CID 119161922.
  20. Muller, Lyle; Mináč, Ján; Nguyen, Tung T. (2021). "An algebraic approach to the Kuramoto model". Physical Review E. 104 (2): L022201. arXiv:2105.04923. Bibcode:2021PhRvE.104b2201M. doi:10.1103/PhysRevE.104.L022201. PMID 34525516. S2CID 234357967.
  21. "Faculty Awards, University of Western Ontario".
  22. "Office of the President, University of Western Ontario".
  23. "Canadian Mathematical Society".
  24. "Western Academy For Advanced Research".
  25. "Western News". 4 March 2013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.