Kakabekia
Kakabekia is a genus of microorganism. Kakabekia umbellata was first found in the 1.88 billion year old Gunflint Chert, and in 1966, a living member of the genus, Kakabekia barghoorniana was discovered in Wales - it is also found around the world, typically at 1000-2000m elevations. The roughly 2 billion year interval between these species has led some to call it the “oldest living fossil”.[1]
Kakabekia Temporal range: | |
---|---|
Scientific classification | |
Domain: | |
Genus: | Kakabekia E.S. Barghoorn & S.A. Tyler, 1965 |
Type species | |
Kakabekia umbellata Barghoorn & Tyler, 1965 | |
Species | |
|
Anatomy
Kakabekia umbellata, as described by Barghoorn and Tyler in 1965 has an umbellate “mantle”, a stalk-like “stipe” and a “bulb” attached to it.[2] Morphology of K. barhoorniana differs; it has a round structure with radial segmentation.[3] They have a (possibly siliceous) ring around this structure.[4] Feulgen-positive material (DNA) was seen in “clots” in K. barghooriniana cytoplasms, placing them in the Prokaryotes.
Distribution
Kakabekia umbellata is known from the Gunflint chert of Canada. K. barghoorniana was first discovered in a soil sample cultured in ammonia from Harlech Castle, Wales in 1968.[5] Further research found K. b. in Iceland and Alaska, as well as other locations in Wales.
Metabolism
Kakabekia has an unusual metabolism. While it has no need for oxygen in its growth, it is not inhibited by it, like Clostridium. This, and the fact that it has some of the oxygen-utilising enzymes, suggest that it is a transition stage of oxygen-utilisation. Kakabekia barghoorni can only be grown in ammonia-rich conditions. This may reflect ancient atmosphere composition.
Ontogeny
Barghoorn and Tyler propose an ontogeny where, starting from a spore, the stipe is grown which then produced the umbellate "mantle".[2] In 1967, Licari and Cloud noted that many fossil "Huroniosporas" (a wastebasket taxon containing spore-like beings) have holes or "apertures" in them, suggesting a detachment point from Kakabekia stipes.[6] However, based on observations of living K. barghoorniana, Siegel et al. came to a very different conclusion. They found that the spore-like bodies would grow into a larger, spherical organism, encircled by the ring described above. Then, divisions form radiating from the center, and a stipe grows and releases a spore. After about 10 days, the organism degenerates and dies (senescence).[3]
References
- Siegel BZ, Siegel SM (October 1970). "Biology of the Precambrian Genus Kakabekia: New Observations on Living Kakabekia barghoorniana". Proceedings of the National Academy of Sciences of the United States of America. 67 (2): 1005–10. Bibcode:1970PNAS...67.1005S. doi:10.1073/pnas.67.2.1005. JSTOR 60032. PMC 283305. PMID 16591868.
- Barghoorn ES, Tyler SA (February 1965). "Microorganisms from the Gunflint Chert: These structurally preserved Precambrian fossils from Ontario are the most ancient organisms known". Science. 147 (3658): 563–75. doi:10.1126/science.147.3658.563. PMID 17783259.
- Siegel SM, Roberts K, Nathan H, Daly O (June 1967). "Living relative of the microfossil Kakabekia". Science. 156 (3779): 1231–4. Bibcode:1967Sci...156.1231S. doi:10.1126/science.156.3779.1231. PMID 6025541. S2CID 42424488.
- Seckbach J (2013). Enigmatic Microorganisms and Life in Extreme Environments. Springer Science & Business Media. pp. 91–96. ISBN 978-9401148382.
- Siegel SM, Siegel BZ (July 1968). "A Living Organism Morphologically Comparable to the Precambrian Genus Kakabekia". American Journal of Botany. 55 (6): 684–687. doi:10.2307/2440525. JSTOR 2440525.
- Licari GR, Cloud PE (April 1968). "Reproductive structures and taxonomic affinities of some nannofossils from the gunflint iron formation". Proceedings of the National Academy of Sciences of the United States of America. 59 (4): 1053–60. Bibcode:1968PNAS...59.1053L. doi:10.1073/pnas.59.4.1053. PMC 224829. PMID 4870860.