Kampé de Fériet function
In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.
The Kampé de Fériet function is given by
Applications
The general sextic equation can be solved in terms of Kampé de Fériet functions.[1]
See also
- Appell series
- Humbert series
- Lauricella series (three-variable)
References
- Exton, Harold (1978), Handbook of hypergeometric integrals, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-122-0, MR 0474684
- Kampé de Fériet, M. J. (1937), La fonction hypergéométrique., Mémorial des sciences mathématiques (in French), vol. 85, Paris: Gauthier-Villars, JFM 63.0996.03
- Ragab, F. J. (1963). "Expansions of Kampe de Feriet's double hypergeometric function of higher order". J. reine angew. Math. 212 (212): 113–119. doi:10.1515/crll.1963.212.113. S2CID 118329382.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.