NLTS conjecture
In quantum information theory, the no low-energy trivial state (NLTS) conjecture is a precursor to a quantum PCP theorem (qPCP) and posits the existence of families of Hamiltonians with all low-energy states of non-trivial complexity.[1][2][3][4] An NLTS proof would be a consequence of one aspect of qPCP problems – the inability to certify an approximation of local Hamiltonians via NP completeness.[2] In other words, an NLTS proof would be one consequence of the QMA complexity of qPCP problems.[5] On a high level, if proved, NLTS would be one property of the non-Newtonian complexity of quantum computation.[5] NLTS and qPCP conjectures posit the near-infinite complexity involved in predicting the outcome of quantum systems with many interacting states.[6] These calculations of complexity would have implications for quantum computing such as the stability of entangled states at higher temperatures, and the occurrence of entanglement in natural systems.[7][6] There is currently a proof of NLTS conjecture published in preprint.[8]
NLTS property
The NLTS property is the underlying set of constraints that forms the basis for the NLTS conjecture.
Local hamiltonians
A k-local Hamiltonian (quantum mechanics) is a Hermitian matrix acting on n qubits which can be represented as the sum of Hamiltonian terms acting upon at most qubits each:
The general k-local Hamiltonian problem is, given a k-local Hamiltonian , to find the smallest eigenvalue of .[9] is also called the ground-state energy of the Hamiltonian.
The family of local Hamiltonians thus arises out of the k-local problem. Kliesch states the following as a definition for local Hamiltonians in the context of NLTS:[2]
Let I ⊂ N be an index set. A family of local Hamiltonians is a set of Hamiltonians {H(n)}, n ∈ I, where each H(n) is defined on n finite-dimensional subsystems (in the following taken to be qubits), that are of the form
where each Hm(n) acts non-trivially on O(1) qubits. Another constraint is the operator norm of Hm(n) is bounded by a constant independent of n and each qubit is only involved in a constant number of terms Hm(n).
Topological order
In physics, topological order[10] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). In the context of NLTS, Kliesch states: "a family of local gapped Hamiltonians is called topologically ordered if any ground states cannot be prepared from a product state by a constant-depth circuit".[2]
NLTS property
Kliesch defines the NLTS property thus:[2]
Let I be an infinite set of system sizes. A family of local Hamiltonians {H(n)}, n ∈ I has the NLTS property if there exists ε > 0 and a function f : N → N such that
- for all n ∈ I, H(n) has ground energy 0,
- ⟨0n|U†H(n)U|0n⟩ > εn for any depth-d circuit U consisting of two qubit gates and for any n ∈ I with n ≥ f(d).
NLTS conjecture
There exists a family of local Hamiltonians with the NLTS property.[2]
Quantum PCP conjecture
Proving the NLTS conjecture is an obstacle for resolving the qPCP conjecture, an even harder theorem to prove.[1] The qPCP conjecture is a quantum analogue of the classical PCP theorem. The classical PCP theorem states that satisfiability problems like 3SAT are NP-hard when estimating the maximal number of clauses that can be simultaneously satisfied in a hamiltonian system.[7] In layman's terms, classical PCP describes the near-infinite complexity involved in predicting the outcome of a system with many resolving states, such as a water bath full of hundreds of magnets.[6] qPCP increases the complexity by trying to solve PCP for quantum states.[6] Though it hasn't been proven yet, a positive proof of qPCP would imply that quantum entanglement in Gibbs states could remain stable at higher-energy states above absolute zero.[7]
NLETS proof
NLTS on its own is difficult to prove, though a simpler no low-error trivial states (NLETS) theorem has been proven, and that proof is a precursor for NLTS.[11]
NLETS is defined as:[11]
- Let k > 1 be some integer, and {Hn}n ∈ N be a family of k-local Hamiltonians. {Hn}n ∈ N is NLETS if there exists a constant ε > 0 such that any ε-impostor family F = {ρn}n ∈ N of {Hn}n ∈ N is non-trivial.
References
- "On the NLTS Conjecture". Simons Institute for the Theory of Computing. 2021-06-30. Retrieved 2022-08-07.
- Kliesch, Alexander (2020-01-23). "The NLTS conjecture" (PDF). Technical University of Munich. Retrieved Aug 7, 2022.
- Anshu, Anurag; Nirkhe, Chinmay (2020-11-01). Circuit lower bounds for low-energy states of quantum code Hamiltonians. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 215. pp. 6:1–6:22. arXiv:2011.02044. doi:10.4230/LIPIcs.ITCS.2022.6. ISBN 9783959772174. S2CID 226299885.
- Freedman, Michael H.; Hastings, Matthew B. (January 2014). "Quantum Systems on Non-$k$-Hyperfinite Complexes: a generalization of classical statistical mechanics on expander graphs". Quantum Information and Computation. 14 (1&2): 144–180. arXiv:1301.1363. doi:10.26421/qic14.1-2-9. ISSN 1533-7146. S2CID 10850329.
- "Circuit lower bounds for low-energy states of quantum code Hamiltonians". DeepAI. 2020-11-03. Retrieved 2022-08-07.
- "Computer Science Proof Lifts Limits on Quantum Entanglement". Quanta Magazine. 2022-07-18. Retrieved 2022-08-08.
- "Research Vignette: Quantum PCP Conjectures". Simons Institute for the Theory of Computing. 2014-09-30. Retrieved 2022-08-08.
- Anshu, Anurag; Breuckmann, Nikolas P.; Nirkhe, Chinmay (2023). "NLTS Hamiltonians from Good Quantum Codes". Proceedings of the 55th Annual ACM Symposium on Theory of Computing. pp. 1090–1096. arXiv:2206.13228. doi:10.1145/3564246.3585114. ISBN 9781450399135. S2CID 250072529.
- Morimae, Tomoyuki; Takeuchi, Yuki; Nishimura, Harumichi (2018-11-15). "Merlin-Arthur with efficient quantum Merlin and quantum supremacy for the second level of the Fourier hierarchy". Quantum. 2: 106. arXiv:1711.10605. Bibcode:2018Quant...2..106M. doi:10.22331/q-2018-11-15-106. ISSN 2521-327X. S2CID 3958357.
- Wen 1990 .
- Eldar, Lior (2017). "Local Hamiltonians Whose Ground States are Hard to Approximate" (PDF). IEEE Symposium on Foundations of Computer Science (FOCS). Retrieved Aug 7, 2022.