Nucleoporin 85

Nucleoporin 85 (Nup85) is a protein that in humans is encoded by the NUP85 gene.[5][6]

NUP85
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesNUP85, Nup75, FROUNT, nucleoporin 85, NPHS17
External IDsOMIM: 170285 MGI: 3046173 HomoloGene: 11755 GeneCards: NUP85
Orthologs
SpeciesHumanMouse
Entrez

79902

445007

Ensembl

ENSG00000125450

ENSMUSG00000020739

UniProt

Q9BW27

Q8R480

RefSeq (mRNA)

NM_001303276
NM_024844
NM_001330472

NM_001002929

RefSeq (protein)

NP_001290205
NP_001317401
NP_079120

NP_001002929

Location (UCSC)Chr 17: 75.21 – 75.24 MbChr 11: 115.46 – 115.47 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

Bidirectional transport of macromolecules between the cytoplasm and nucleus occurs through nuclear pore complexes (NPCs) embedded in the nuclear envelope. NPCs are composed of subcomplexes, and NUP85 is part of one such subcomplex, Nup107-160.[6]

Model organisms

Model organisms have been used in the study of NUP85 function. A conditional knockout mouse line called Nup85tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[7] Male and female animals underwent a standardized phenotypic screen[8] to determine the effects of deletion.[9][10][11][12] Additional screens performed: - In-depth immunological phenotyping[13]

References

  1. GRCh38: Ensembl release 89: ENSG00000125450 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000020739 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M (Feb 1994). "Pericentrin, a highly conserved centrosome protein involved in microtubule organization". Cell. 76 (4): 639–50. doi:10.1016/0092-8674(94)90504-5. PMID 8124707. S2CID 20503793.
  6. "Entrez Gene: NUP85 nucleoporin 85kDa".
  7. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  8. "International Mouse Phenotyping Consortium".
  9. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  12. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  13. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.