Nanocellulose

Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) also called nanofibrillated cellulose (NFC), or bacterial nanocellulose, which refers to nano-structured cellulose produced by bacteria.

Nanocellulose

CNF is a material composed of nanosized cellulose fibrils with a high aspect ratio (length to width ratio). Typical fibril widths are 5–20 nanometers with a wide range of lengths, typically several micrometers. It is pseudo-plastic and exhibits thixotropy, the property of certain gels or fluids that are thick (viscous) under normal conditions, but become less viscous when shaken or agitated. When the shearing forces are removed the gel regains much of its original state. The fibrils are isolated from any cellulose containing source including wood-based fibers (pulp fibers) through high-pressure, high temperature and high velocity impact homogenization, grinding or microfluidization (see manufacture below).[1][2][3]

Nanocellulose can also be obtained from native fibers by an acid hydrolysis, giving rise to highly crystalline and rigid nanoparticles which are shorter (100s to 1000 nanometers) than the cellulose nanofibrils (CNF) obtained through homogenization, microfluiodization or grinding routes. The resulting material is known as cellulose nanocrystal (CNC).[4]

Nanochitin is similar in its nanostructure to nanocellulose.

History and terminology

The terminology microfibrillated/nanocellulose or (MFC) was first used by Turbak, Snyder and Sandberg in the late 1970s at the ITT Rayonier labs in Whippany, New Jersey, to describe a product prepared as a gel type material by passing wood pulp through a Gaulin type milk homogenizer at high temperatures and high pressures followed by ejection impact against a hard surface.[5]

The terminology first appeared publicly in the early 1980s when a number of patents and publications were issued to ITT Rayonier on a new nanocellulose composition of matter.[6] In later work, F. W. Herrick at ITT Rayonier Eastern Research Division (ERD) Lab in Whippany also published work on making a dry powder form of the gel.[7] Rayonier has produced purified pulps.[8][9][10] Rayonier gave free license to whoever wanted to pursue this new use for cellulose. Rayonier, as a company, never pursued scale-up. Rather, Turbak et al. pursued 1) finding new uses for the MFC/nanocellulose. These included using MFC as a thickener and binder in foods, cosmetics, paper formation, textiles, nonwovens, etc. and 2) evaluate swelling and other techniques for lowering the energy requirements for MFC/Nanocellulose production.[11] After ITT closed the Rayonier Whippany Labs in 1983–84, Herric worked on making a dry powder form of MFC at the Rayonier labs in Shelton, Washington.[7]

In the mid-1990s, the group of Taniguchi and co-workers and later Yano and co-workers pursued the effort in Japan.[12]

Manufacture

Nanocellulose, which is also called cellulose nanofibers (CNF), microfibrillated cellulose (MFC) or cellulose nanocrystal (CNC), can be prepared from any cellulose source material, but woodpulp is normally used.

The nanocellulose fibrils may be isolated from the wood-based fibers using mechanical methods which expose the pulp to high shear forces, ripping the larger wood-fibres apart into nanofibers. For this purpose, high-pressure homogenizers, grinders or microfluidizers can be used. The homogenizers are used to delaminate the cell walls of the fibers and liberate the nanosized fibrils. This process consumes very large amounts of energy and values over 30 MWh/tonne are not uncommon.

To address this problem, sometimes enzymatic/mechanical pre-treatments[13] and introduction of charged groups for example through carboxymethylation[14] or TEMPO-mediated oxidation are used.[15] These pre-treatments can decrease energy consumption below 1 MWh/tonne.[16] "Nitro-oxidation" has been developed to prepare carboxycellulose nanofibers directly from raw plant biomass. Owing to fewer processing steps to extract nanocellulose, the nitro-oxidation method has been found to be a cost-effective, less-chemically oriented and efficient method to extract carboxycellulose nanofibers.[17][18] Functionalized nanofibers obtained using nitro-oxidation have been found to be an excellent substrate to remove heavy metal ion impurities such as lead,[19] cadmium,[20] and uranium.[21]

CNCs are rodlike highly crystalline particles (relative crystallinity index above 75%) with a rectangular cross section. They are formed by the acid hydrolysis of native cellulose fibers commonly using sulfuric or hydrochloric acid. Amorphous sections of native cellulose are hydrolysed and after careful timing, crystalline sections can be retrieved from the acid solution by centrifugation and washing. Their dimensions depend on the native cellulose source material, and hydrolysis time and temperature.[22]

Spherical shaped carboxycellulose nanoparticles prepared by nitric acid-phosphoric acid treatment are stable in dispersion in its non-ionic form.[23] In April 2013 breakthroughs in nanocellulose production, by algae, were announced at an American Chemical Society conference, by speaker R. Malcolm Brown, Jr., Ph.D, who has pioneered research in the field for more than 40 years, spoke at the First International Symposium on Nanocellulose, part of the American Chemical Society meeting. Genes from the family of bacteria that produce vinegar, Kombucha tea and nata de coco have become stars in a project — which scientists said has reached an advanced stage - that would turn algae into solar-powered factories for producing the “wonder material” nanocellulose.[24]

A chemo-mechanical process for production of nanocellulose from cotton linters has been demonstrated with a capacity of 10 kg per day.[25]

Structure and properties

AFM height image of carboxymethylated nanocellulose adsorbed on a silica surface. The scanned surface area is 1 µm2.

Dimensions and crystallinity

The ultrastructure of nanocellulose derived from various sources has been extensively studied. Techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), wide angle X-ray scattering (WAXS), small incidence angle X-ray diffraction and solid state 13C cross-polarization magic angle spinning (CP/MAS), nuclear magnetic resonance (NMR) and spectroscopy have been used to characterize typically dried nanocellulose morphology.[26]

A combination of microscopic techniques with image analysis can provide information on fibril widths, it is more difficult to determine fibril lengths, because of entanglements and difficulties in identifying both ends of individual nanofibrils.[27][28] Also, nanocellulose suspensions may not be homogeneous and can consist of various structural components, including cellulose nanofibrils and nanofibril bundles.[29]

In a study of enzymatically pre-treated nanocellulose fibrils in a suspension the size and size-distribution were established using cryo-TEM. The fibrils were found to be rather mono-dispersed mostly with a diameter of ca. 5 nm although occasionally thicker fibril bundles were present.[13] By combining ultrasonication with an "oxidation pretreatment", cellulose microfibrils with a lateral dimension below 1 nm has been observed by AFM. The lower end of the thickness dimension is around 0.4 nm, which is related to the thickness of a cellulose monolayer sheet.[30]

Aggregate widths can be determined by CP/MAS NMR developed by Innventia AB, Sweden, which also has been demonstrated to work for nanocellulose (enzymatic pre-treatment). An average width of 17 nm has been measured with the NMR-method, which corresponds well with SEM and TEM. Using TEM, values of 15 nm have been reported for nanocellulose from carboxymethylated pulp. However, thinner fibrils can also be detected. Wågberg et al. reported fibril widths of 5–15 nm for a nanocellulose with a charge density of about 0.5 meq./g.[14] The group of Isogai reported fibril widths of 3–5 nm for TEMPO-oxidized cellulose having a charge density of 1.5 meq./g.[31]

Pulp chemistry has a significant influence on nanocellulose microstructure. Carboxymethylation increases the numbers of charged groups on the fibril surfaces, making the fibrils easier to liberate and results in smaller and more uniform fibril widths (5–15 nm) compared to enzymatically pre-treated nanocellulose, where the fibril widths were 10–30 nm.[32] The degree of crystallinity and crystal structure of nanocellulose. Nanocellulose exhibits cellulose crystal I organization and the degree of crystallinity is unchanged by the preparation of the nanocellulose. Typical values for the degree of crystallinity were around 63%.[32]

Viscosity

The rheology of nanocellulose dispersions has been investigated.[33][13] and revealed that the storage and loss modulus were independent of the angular frequency at all nanocellulose concentrations between 0.125% to 5.9%. The storage modulus values are particularly high (104 Pa at 3% concentration)[13] compared to results for CNCs (102 Pa at 3% concentration).[33] There is also a strong concentration dependence as the storage modulus increases 5 orders of magnitude if the concentration is increased from 0.125% to 5.9%. Nanocellulose gels are also highly shear thinning (the viscosity is lost upon introduction of the shear forces). The shear-thinning behaviour is particularly useful in a range of different coating applications.[13]

Mechanical properties

Crystalline cellulose has a stiffness about 140–220 GPa, comparable with that of Kevlar and better than that of glass fiber, both of which are used commercially to reinforce plastics. Films made from nanocellulose have high strength (over 200 MPa), high stiffness (around 20 GPa)[34] but lack of high strain (12%). Its strength/weight ratio is 8 times that of stainless steel.[35] Fibers made from nanocellulose have high strength (up to 1.57 GPa) and stiffness (up to 86 GPa).[36]

Barrier properties

In semi-crystalline polymers, the crystalline regions are considered to be gas impermeable. Due to relatively high crystallinity,[32] in combination with the ability of the nanofibers to form a dense network held together by strong inter-fibrillar bonds (high cohesive energy density), it has been suggested that nanocellulose might act as a barrier material.[31][37][38] Although the number of reported oxygen permeability values are limited, reports attribute high oxygen barrier properties to nanocellulose films. One study reported an oxygen permeability of 0.0006 (cm3 µm)/(m2 day kPa) for a ca. 5 µm thin nanocellulose film at 23 °C and 0% RH.[37] In a related study, a more than 700-fold decrease in oxygen permeability of a polylactide (PLA) film when a nanocellulose layer was added to the PLA surface was reported.[31]

The influence of nanocellulose film density and porosity on film oxygen permeability has been explored.[39] Some authors have reported significant porosity in nanocellulose films,[40][34][41] which seems to be in contradiction with high oxygen barrier properties, whereas Aulin et al.[37] measured a nanocellulose film density close to density of crystalline cellulose (cellulose Iß crystal structure, 1.63 g/cm3)[42] indicating a very dense film with a porosity close to zero.

Changing the surface functionality of the cellulose nanoparticle can also affect the permeability of nanocellulose films. Films constituted of negatively charged CNCs could effectively reduce permeation of negatively charged ions, while leaving neutral ions virtually unaffected. Positively charged ions were found to accumulate in the membrane.[43]

Multi-parametric surface plasmon resonance is one of the methods to study barrier properties of natural, modified or coated nanocellulose. The different antifouling, moisture, solvent, antimicrobial barrier formulation quality can be measured on the nanoscale. The adsorption kinetics as well as the degree of swelling can be measured in real-time and label-free.[44][45]

Liquid crystals, colloidal glasses, and hydrogels

Owed to their anisotropic shape and surface charge, nanocelluloses (mostly rigid CNCs) have a high excluded volume and self-assemble into cholesteric liquid crystals beyond a critical volume fraction.[46] Nanocellulose liquid crystals are left-handed due to the right-handed twist on particle level.[47] Nanocellulose phase behavior is susceptible to ionic charge screening. An increase in ionic strength induces the arrest of nanocellulose dispersions into attractive glasses.[48] At further increasing ionic strength, nanocelluloses aggregate into hydrogels.[49] The interactions within nanocelluloses are weak and reversible, wherefore nanocellulose suspensions and hydrogels are self-healing and may be applied as injectable materials[50] or 3D printing inks.[51]

Bulk foams and aerogels

Nanocellulose can also be used to make aerogels/foams, either homogeneously or in composite formulations. Nanocellulose-based foams are being studied for packaging applications in order to replace polystyrene-based foams. Svagan et al. showed that nanocellulose has the ability to reinforce starch foams by using a freeze-drying technique.[52] The advantage of using nanocellulose instead of wood-based pulp fibers is that the nanofibrils can reinforce the thin cells in the starch foam. Moreover, it is possible to prepare pure nanocellulose aerogels applying various freeze-drying and super critical CO
2
drying techniques. Aerogels and foams can be used as porous templates.[53][54] Tough ultra-high porosity foams prepared from cellulose I nanofibril suspensions were studied by Sehaqui et al. a wide range of mechanical properties including compression was obtained by controlling density and nanofibril interaction in the foams.[55] CNCs could also be made to gel in water under low power sonication giving rise to aerogels with the highest reported surface area (>600m2/g) and lowest shrinkage during drying (6.5%) of cellulose aerogels.[54] In another study by Aulin et al.,[56] the formation of structured porous aerogels of nanocellulose by freeze-drying was demonstrated. The density and surface texture of the aerogels was tuned by selecting the concentration of the nanocellulose dispersions before freeze-drying. Chemical vapour deposition of a fluorinated silane was used to uniformly coat the aerogel to tune their wetting properties towards non-polar liquids/oils. The authors demonstrated that it is possible to switch the wettability behaviour of the cellulose surfaces between super-wetting and super-repellent, using different scales of roughness and porosity created by the freeze-drying technique and change of concentration of the nanocellulose dispersion. Structured porous cellulose foams can however also be obtained by utilizing the freeze-drying technique on cellulose generated by Gluconobacter strains of bacteria, which bio-synthesize open porous networks of cellulose fibers with relatively large amounts of nanofibrils dispersed inside. Olsson et al.[57] demonstrated that these networks can be further impregnated with metalhydroxide/oxide precursors, which can readily be transformed into grafted magnetic nanoparticles along the cellulose nanofibers. The magnetic cellulose foam may allow for a number of novel applications of nanocellulose and the first remotely actuated magnetic super sponges absorbing 1 gram of water within a 60 mg cellulose aerogel foam were reported. Notably, these highly porous foams (>98% air) can be compressed into strong magnetic nanopapers, which may find use as functional membranes in various applications.

Pickering emulsions and foams

Nanocelluloses can stabilize emulsions and foams by a Pickering mechanism, i.e. they adsorb at the oil-water or air-water interface and prevent their energetic unfavorable contact. Nanocelluloses form oil-in-water emulsions with a droplet size in the range of 4-10 μm that are stable for months and can resist high temperatures and changes in pH.[58][59] Nanocelluloses decrease the oil-water interface tension[60] and their surface charge induces electrostatic repulsion within emulsion droplets. Upon salt-induced charge screening the droplets aggregate but do not undergo coalescence, indicating strong steric stabilization.[61] The emulsion droplets even remain stable in the human stomach and resist gastric lipolysis, thereby delaying lipid absorption and satiation.[62][63] In contrast to emulsions, native nanocelluloses are generally not suitable for the Pickering stabilization of foams, which is attributed to their primarily hydrophilic surface properties that results in an unfavorable contact angle below 90° (they are preferably wetted by the aqueous phase).[64] Using hydrophobic surface modifications or polymer grafting, the surface hydrophobicity and contact angle of nanocelluloses can be increased, allowing also the Pickering stabilization of foams.[65] By further increasing the surface hydrophobicity, inverse water-in-oil emulsions can be obtained, which denotes a contact angle higher than 90°.[66][67] It was further demonstrated that nanocelluloses can stabilize water-in-water emulsions in presence of two incompatible water-soluble polymers.[68]

Cellulose nanofiber plate (CNFP)

A bottom up approach can be used to create a high-performance bulk material with low density, high strength and toughness, and great thermal dimensional stability. Cellulose nanofiber hydrogel is created by biosynthesis. The hydrogels can then be treated with a polymer solution or by surface modification and then are hot-pressed at 80 °C. The result is bulk material with excellent machinability. “The ultrafine nanofiber network structure in CNFP results in more extensive hydrogen bonding, the high in-plane orientation, and “three way branching points” of the microfibril networks”.[69] This structure gives CNFP its high strength by distributing stress and adding barriers to crack formation and propagation. The weak link in this structure is bond between the pressed layers which can lead to delamination. To reduce delamination, the hydrogel can be treated with silicic acid, which creates strong covalent cross-links between layers during hot pressing.[69]

Surface modification

The surface modification of nanocellulose is currently receiving a large amount of attention.[70] Nanocellulose displays a high concentration of hydroxyl groups at the surface which can be reacted. However, hydrogen bonding strongly affects the reactivity of the surface hydroxyl groups. In addition, impurities at the surface of nanocellulose such as glucosidic and lignin fragments need to be removed before surface modification to obtain acceptable reproducibility between different batches.[71]

Safety aspects

Processing of nanocellulose does not cause significant exposure to fine particles during friction grinding or spray drying. No evidence of inflammatory effects or cytotoxicity on mouse or human macrophages can be observed after exposure to nanocellulose. The results of toxicity studies suggest that nanocellulose is not cytotoxic and does not cause any effects on inflammatory system in macrophages. In addition, nanocellulose is not acutely toxic to Vibrio fischeri in environmentally relevant concentrations.[72]

Potential applications

Cellulose nanocrystals self-organized into Bio Iridescent Sequin.

The properties of nanocellulose (e.g. mechanical properties, film-forming properties, viscosity etc.) makes it an interesting material for many applications.[73]

Cellulose nanocrystals self-organized into RGB glittery pigment particles.
Nanocellulose recycling chart[74]
GaAs electronics on nanocellulose substrate[75]

Paper and paperboard

Bendable solar cell on nanocellulose substrate

In the area of paper and paperboard manufacture, nanocelluloses are expected to enhance the fiber-fiber bond strength and, hence, have a strong reinforcement effect on paper materials.[76][77][78] Nanocellulose may be useful as a barrier in grease-proof type of papers and as a wet-end additive to enhance retention, dry and wet strength in commodity type of paper and board products.[79][80][81][82] It has been shown that applying CNF as a coating material on the surface of paper and paperboard improves the barrier properties, especially air resistance[83] and grease/oil resistance.[83][84][85] It also enhances the structure properties of paperboards (smoother surface).[86] Very high viscosity of MFC/CNF suspensions at low solids content limits the type of coating techniques that can be utilized to apply these suspensions onto paper/paperboard. Some of the coating methods utilized for MFC surface application onto paper/paperboard have been rod coating,[85] size press,[84] spray coating,[87] foam coating [88] and slot-die coating.[83] Wet-end surface application of mineral pigments and MFC mixture to improve barrier, mechanical and printing properties of paperboard are also being explored.[89]

Nanocellulose can be used to prepare flexible and optically transparent paper. Such paper is an attractive substrate for electronic devices because it is recyclable, compatible with biological objects, and easily biodegrades.[75]

Composite

As described above the properties of the nanocellulose makes an interesting material for reinforcing plastics. Nanocellulose can be spun into filaments that are stronger and stiffer than spider silk.[90][91] Nanocellulose has been reported to improve the mechanical properties of thermosetting resins, starch-based matrixes, soy protein, rubber latex, poly(lactide). Hybrid cellulose nanofibrils-clay minerals composites present interesting mechanical, gas barrier and fire retardancy properties.[92] The composite applications may be for use as coatings and films,[93] paints, foams, packaging.

Food

Nanocellulose can be used as a low calorie replacement for carbohydrate additives used as thickeners, flavour carriers, and suspension stabilizers in a wide variety of food products.[94] It is useful for producing fillings, crushes, chips, wafers, soups, gravies, puddings etc. The food applications arise from the rheological behaviour of the nanocellulose gel.

Hygiene and absorbent products

Applications in this field include: super water absorbent material (e.g. for incontinence pads material), nanocellulose used together with super absorbent polymers, nanocellulose in tissue, non-woven products or absorbent structures and as antimicrobial films.

Emulsion and dispersion

Nanocellulose has potential applications in the general area of emulsion and dispersion applications in other fields.[95][96]

Medical, cosmetic and pharmaceutical

The use of nanocellulose in cosmetics and pharmaceuticals has been suggested:

  • Freeze-dried nanocellulose aerogels used in sanitary napkins, tampons, diapers or as wound dressing
  • The use of nanocellulose as a composite coating agent in cosmetics e.g. for hair, eyelashes, eyebrows or nails
  • A dry solid nanocellulose composition in the form of tablets for treating intestinal disorders
  • Nanocellulose films for screening of biological compounds and nucleic acids encoding a biological compound
  • Filter medium partly based on nanocellulose for leukocyte free blood transfusion
  • A buccodental formulation, comprising nanocellulose and a polyhydroxylated organic compound
  • Powdered nanocellulose has also been suggested as an excipient in pharmaceutical compositions
  • Nanocellulose in compositions of a photoreactive noxious substance purging agent
  • Elastic cryo-structured gels for potential biomedical and biotechnological application[97]
  • Matrix for 3D cell culture

Bio-based electronics and energy storage

Nanocellulose can pave the way for a new type of "bio-based electronics" where interactive materials are mixed with nanocellulose to enable the creation of new interactive fibers, films, aerogels, hydrogels and papers.[98] E.g. nanocellulose mixed with conducting polymers such as PEDOT:PSS show synergetic effects resulting in extraordinary[99] mixed electronic and ionic conductivity, which is important for energy storage applications. Filaments spun from a mix of nanocellulose and carbon nanotubes show good conductivity and mechanical properties.[100] Nanocellulose aerogels decorated with carbon nanotubes can be constructed into robust compressible 3D supercapacitor devices.[101][102] Structures from nanocellulose can be turned into bio-based triboelectric generators[103] and sensors.

Bio-based coloured materials

Cellulose nanocrystals have shown the possibility to self organize into chiral nematic structures[104] with angle-dependent iridescent colours. It is thus possible to manufacture totally bio-based pigments and glitters, films including sequins having a metallic glare and a small footprint compared to fossil-based alternatives.

Other potential applications

  • As a highly scattering material for ultra-white coatings[105]
  • Activate the dissolution of cellulose in different solvents
  • Regenerated cellulose products, such as fibers films, cellulose derivatives
  • Tobacco filter additive
  • Organometallic modified nanocellulose in battery separators
  • Reinforcement of conductive materials
  • Loud-speaker membranes
  • High-flux membranes
  • Computer components[35][106]
  • Capacitors[102]
  • Lightweight body armour and ballistic glass[35]
  • Corrosion inhibitors[107]
  • Radio lenses [108]

Commercial production

Although wood-driven nanocellulose was first produced in 1983 by Herrick[7] and Turbak,[6] its commercial production postponed till 2010, mainly due to the high production energy consumption and high production cost. Innventia AB (Sweden) established the first nanocellulose pilot production plant 2010.[109] Companies and research institutes actively producing micro and nano fibrillated cellulose include: American Process (US), Borregaard (Norway), CelluComp (UK), Chuetsu Pulp and Paper (Japan), CTP/FCBA (France), Daicel (Japan), Dai-ichi Kyogo (Japan), Empa (Switzerland), FiberLean Technologies (UK), InoFib (France), Nano Novin Polymer Co. (Iran), Nippon Paper (Japan), Norske Skog (Norway), Oji Paper (Japan), RISE (Sweden), SAPPI (Netherlands), Seiko PMC (Japan), Stora Enso (Finland), Sugino Machine (Japan), Suzano (Brazil), Tianjin Haojia Cellulose Co. Ltd (China), University of Maine (US), UPM (Finland), US Forest Products Lab (US), VTT (Finland), and Weidmann Fiber Technology (Switzerland).[110] Companies and research institutes actively producing cellulose nanocrystals include: Alberta Innovates (Canada), American Process (US), Blue Goose Biorefineries (Canada), CelluForce (Canada), FPInnovations (Canada), Hangzhou Yeuha Technology Co. (China), Melodea (Israel/Sweden), Sweetwater Energy (US), Tianjin Haojia Cellulose Co. Ltd (China), and US Forest Products Lab (US).[110] Companies and research institutes actively producing cellulose filaments include: Kruger (Canada), Performance BioFilaments (Canada), and Tianjin Haojia Cellulose Co. Ltd (China).[110] Cellucomp (Scotland) produces Curran, a root-vegetable based nanocellulose.[111]

See also

References

  1. Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing (2016). "Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications". Chemical Reviews. 116 (16): 9305–9374. doi:10.1021/acs.chemrev.6b00225. PMID 27459699.
  2. Klemm, Dieter; Kramer, Friederike; Moritz, Sebastian; Lindström, Tom; Ankerfors, Mikael; Gray, Derek; Dorris, Annie (2011). "Nanocelluloses: A New Family of Nature-Based Materials". Angewandte Chemie International Edition. 50 (24): 5438–5466. doi:10.1002/anie.201001273. PMID 21598362.
  3. Habibi, Youssef (2014). "Key advances in the chemical modification of nanocelluloses". Chemical Society Reviews. 43 (5): 1519–1542. doi:10.1039/C3CS60204D. PMID 24316693.
  4. Peng BL, Dhar N, Liu HL, Tam KC (2011). "Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective" (PDF). The Canadian Journal of Chemical Engineering. 89 (5): 1191–1206. doi:10.1002/cjce.20554. Archived from the original (PDF) on 2016-10-24. Retrieved 2012-08-28.
  5. Kalia, Susheel; Kaith, B. S; Kaur, Inderjeet, eds. (2011). Cellulose Fibers: Bio- and Nano-Polymer Composites. doi:10.1007/978-3-642-17370-7. ISBN 978-3-642-17369-1.
  6. Turbak, A.F.; F.W. Snyder; K.R. Sandberg (1983). "Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential". In A. Sarko (ed.). Proceedings of the Ninth Cellulose Conference. Applied Polymer Symposia, 37. New York City: Wiley. pp. 815–827. ISBN 0-471-88132-5.
  7. Herrick, F.W.; R.L. Casebier; J.K. Hamilton; K.R. Sandberg (1983). "Microfibrillated cellulose: morphology and accessibility". In A. Sarko (ed.). Proceedings of the Ninth Cellulose Conference. Applied Polymer Symposia, 37. New York City: Wiley. pp. 797–813. ISBN 0-471-88132-5.
  8. Turbak, A.F., F.W. Snyder, and K.R. Sandberg U.S. Patent 4,341,807; U.S. Patent 4,374,702; U.S. Patent 4,378,381; U.S. Patent 4,452,721; U.S. Patent 4,452,722; U.S. Patent 4,464,287; U.S. Patent 4,483,743; U.S. Patent 4,487,634; U.S. Patent 4,500,546
  9. Herrick, F. W.; Casebier, R. L.; Hamilton, J. K.; Sandberg, K. R. (January 1983). "Microfibrillated cellulose: Morphology and accessibility". J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States). 37. OSTI 5039044.
  10. "Birth of Nanocellulose".
  11. Turbak, A.F., Snyder, F.W. and Sandberg, K.R. (1984) "Microfibrillated Cellulose—A New Composition of Commercial Significance," 1984 Nonwovens Symposium, Myrtle Beach, SC, Apr. 16–19. TAPPI Press, Atlanta, GA. pp 115–124.
  12. Berglund, Lars (2005). "Cellulose-based nanocomposites". In A.K. Mohanty; M. Misra; L. Drzal (eds.). Natural fibers, biopolymers and biocomposites. Boca Raton, Florida: CRC Press. pp. 807–832. ISBN 978-0-8493-1741-5.
  13. Pääkkö, M.; M. Ankerfors; H. Kosonen; A. Nykänen; S. Ahola; M. Österberg; J. Ruokolainen; J. Laine; P.T. Larsson; O. Ikkala; T. Lindström (2007). "Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels". Biomacromolecules. 8 (6): 1934–1941. doi:10.1021/bm061215p. PMID 17474776.
  14. Wågberg, Lars; Gero Decher; Magnus Norgren; Tom Lindström; Mikael Ankerfors; Karl Axnäs (2008). "The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes". Langmuir. 24 (3): 784–795. doi:10.1021/la702481v. PMID 18186655.
  15. "Marcus Wallenberg Prize: 2015 – Akira Isogai, Tsuguyuki Saito, Japan, and Yoshiharu Nishiyama, France". mwp.org/. Retrieved 23 January 2018.
  16. Lindström, Tom; Mikael Ankerfors (2009). "NanoCellulose Developments in Scandinavia". 7th International Paper and Coating Chemistry Symposium (Preprint CD ed.). Hamilton, Ontario: McMaster University Engineering. ISBN 978-0-9812879-0-4.
  17. Sharma, Priyanka R.; Joshi, Ritika; Sharma, Sunil K.; Hsiao, Benjamin S. (2017). "A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass". Biomacromolecules. 18 (8): 2333–2342. doi:10.1021/acs.biomac.7b00544. PMID 28644013.
  18. Sharma, P.R.; Zheng,B.; Sunil K.,S.; Zhan C.; Wang R.; Bhatia S.,R.; Benjamin S.,H. (2018). "High Aspect Ratio Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method and Their Nanopaper Properties". ACS Applied Nano Materials. 1 (8): 3969–3980. doi:10.1021/acsanm.8b00744. S2CID 139513681.
  19. Sharma, P.R.; Chattopadhyay,A.; Sunil K., S.; Lihong G.,S.; Benjamin S.,H. (2018). "Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method". Cellulose. 25 (3): 1961–1973. doi:10.1007/s10570-018-1659-9. S2CID 103880950.
  20. Sharma, P.R.; Chattopadhyay, A.; Sunil K., S.; Lihong G., S.; Nasim A.; Darren M.; Benjamin S., H. (2018). "Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water". ACS Sustainable Chemistry & Engineering. 6 (3): 3279–3290. doi:10.1021/acssuschemeng.7b03473.
  21. Sharma, P.R.; Chattopadhyay, A.; Sunil K., S.; Benjamin S., H. (2017). "Efficient Removal of UO22+ from Water Using Carboxycellulose Nanofibers Prepared by the Nitro-Oxidation Method". Industrial & Engineering Chemistry Research. 56 (46): 13885–13893. doi:10.1021/acs.iecr.7b03659.
  22. "Nanowhiskers - an overview | ScienceDirect Topics".
  23. Sharma, P.R.; Verma, A.J. (2013). "Functional nanoparticles obtained from cellulose: engineering the shape and size of 6-carboxycellulose". Chemical Communications. 49 (78): 13885–13893. doi:10.1039/c3cc44551h. PMID 23959448.
  24. "Engineering Algae to Make the 'Wonder Material' Nanocellulose for Biofuels and More". newswise.com.
  25. "Nanocellulose - NaNo Research GROUP @ ICAR-CIRCOT, Mumbai".
  26. Siró, István; David Plackett (2010). "Microfibrillated cellulose and new nanocomposite materials: a review". Cellulose. 17 (3): 459–494. doi:10.1007/s10570-010-9405-y. S2CID 14319488.
  27. Chinga-Carrasco, G.; Yu, Y.; Diserud, O. (21 July 2011). "Quantitative Electron Microscopy of Cellulose Nanofibril Structures from Eucalyptus and Pinus radiata Kraft Pulp Fibers". Microscopy and Microanalysis. 17 (4): 563–571. Bibcode:2011MiMic..17..563C. doi:10.1017/S1431927611000444. PMID 21740618. S2CID 2010930.
  28. Chinga-Carrasco G, Miettinen A, Luengo Hendriks CL, Gamstedt EK, Kataja M (2011). Structural Characterisation of Kraft Pulp Fibres and Their Nanofibrillated Materials for Biodegradable Composite Applications. InTech. ISBN 978-953-307-352-1.
  29. Chinga-Carrasco, G. (13 June 2011). "Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view". Nanoscale Research Letters. 6 (1): 417. Bibcode:2011NRL.....6..417C. doi:10.1186/1556-276X-6-417. PMC 3211513. PMID 21711944.
  30. Li, Qingqing; Scott Renneckar (6 January 2011). "Supramolecular Structure Characterization of Molecularly Thin Cellulose I Nanoparticles". Biomacromolecules. 12 (3): 650–659. doi:10.1021/bm101315y. PMID 21210665.
  31. Fukuzumi, Hayaka; Tsuguyuki Saito; Tadahisa Iwata; Yoshiaki Kumamoto; Akira Isogai (2009). "Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation". Biomacromolecules. 10 (1): 162–165. doi:10.1021/bm801065u. PMID 19055320.
  32. Aulin, Christian; Susanna Ahola; Peter Josefsson; Takashi Nishino; Yasuo Hirose; Monika Österberg; Lars Wågberg (2009). "Nanoscale Cellulose Films with Different Crystallinities and Mesostructures-Their Surface Properties and Interaction with Water". Langmuir. 25 (13): 7675–7685. doi:10.1021/la900323n. PMID 19348478.
  33. Tatsumi, Daisuke; Satoshi Ishioka; Takayoshi Matsumoto (2002). "Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions". Journal of the Society of Rheology (Japan). 30 (1): 27–32. doi:10.1678/rheology.30.27.
  34. Henriksson, Marielle; Lars A. Berglund; Per Isaksson; Tom Lindström; Takashi Nishino (2008). "Cellulose nanopaper structures of high toughness". Biomacromolecules. 9 (6): 1579–1585. doi:10.1021/bm800038n. PMID 18498189.
  35. "Why wood pulp is world's new wonder material – tech – 23 August 2012". New Scientist. Retrieved 2012-08-30.
  36. Mittal, N.; Ansari, F.; Gowda V., K.; Brouzet, C.; Chen, P.; Larsson, P.T.; Roth, S.V.; Lundell, F.; Wågberg, L.; Kotov, N.; Söderberg, L.D. (2018). "Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers". ACS Nano. 12 (7): 6378–6388. doi:10.1021/acsnano.8b01084. PMID 29741364.
  37. Aulin, Christian; Mikael Gällstedt; Tom Lindström (2010). "Oxygen and oil barrier properties of microfibrillated cellulose films and coatings". Cellulose. 17 (3): 559–574. doi:10.1007/s10570-009-9393-y. S2CID 137623000.
  38. Syverud, Kristin; Per Stenius (2009). "Strength and barrier properties of MFC films". Cellulose. 16 (1): 75–85. doi:10.1007/s10570-008-9244-2. S2CID 136647719.
  39. Chinga-Carrasco, G.; Syverud K. (19 March 2012). "On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers". Nanoscale Research Letters. 7 (1): 192. Bibcode:2012NRL.....7..192C. doi:10.1186/1556-276X-7-192. PMC 3324384. PMID 22429336.
  40. Henriksson, Marielle; Lars Berglund (2007). "Structure and properties of cellulose nanocomposite films containing melamine formaldehyde" (PDF). Journal of Applied Polymer Science. 106 (4): 2817–2824. doi:10.1002/app.26946.
  41. Svagan AJ, Samir MA, Berglund LA (2007). "Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness". Biomacromolecules. 8 (8): 2556–2563. doi:10.1021/bm0703160. PMID 17655354.
  42. Diddens, Imke; Bridget Murphy; Michael Krisch; Martin Müller (2008). "Anisotropic elastic properties of cellulose measured using inelastic x-ray scattering". Macromolecules. 41 (24): 9755–9759. Bibcode:2008MaMol..41.9755D. doi:10.1021/ma801796u.
  43. Thielemans, Wim; Warbey, C.A; Walsh, D.A. (2009). "Permselective nanostructured membranes based on cellulose nanowhiskers". Green Chemistry. 11 (4): 531–537. doi:10.1039/b818056c.
  44. Mohan, Tamilselvan; Niegelhell, Katrin; Zarth, Cíntia Salomão Pinto; Kargl, Rupert; Köstler, Stefan; Ribitsch, Volker; Heinze, Thomas; Spirk, Stefan; Stana-Kleinschek, Karin (10 November 2014). "Triggering Protein Adsorption on Tailored Cationic Cellulose Surfaces". Biomacromolecules. 15 (11): 3931–3941. doi:10.1021/bm500997s. PMID 25233035.
  45. Vuoriluoto, Maija; Orelma, Hannes; Johansson, Leena-Sisko; Zhu, Baolei; Poutanen, Mikko; Walther, Andreas; Laine, Janne; Rojas, Orlando J. (2015). "Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion". The Journal of Physical Chemistry B. 119 (49): 5275–15286. doi:10.1021/acs.jpcb.5b07628. PMID 26560798.
  46. Revol, J.-F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. (June 1992). "Helicoidal self-ordering of cellulose microfibrils in aqueous suspension". International Journal of Biological Macromolecules. 14 (3): 170–172. doi:10.1016/S0141-8130(05)80008-X. PMID 1390450.
  47. Nyström, Gustav; Arcari, Mario; Adamcik, Jozef; Usov, Ivan; Mezzenga, Raffaele (26 June 2018). "Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase". ACS Nano. 12 (6): 5141–5148. arXiv:1705.06620. doi:10.1021/acsnano.8b00512. PMID 29758157. S2CID 29165853.
  48. Nordenström, Malin; Fall, Andreas; Nyström, Gustav; Wågberg, Lars (26 September 2017). "Formation of Colloidal Nanocellulose Glasses and Gels". Langmuir. 33 (38): 9772–9780. doi:10.1021/acs.langmuir.7b01832. PMID 28853581.
  49. Bertsch, Pascal; Isabettini, Stéphane; Fischer, Peter (11 December 2017). "Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions". Biomacromolecules. 18 (12): 4060–4066. doi:10.1021/acs.biomac.7b01119. PMID 29028331.
  50. Bertsch, Pascal; Schneider, Livia; Bovone, Giovanni; Tibbitt, Mark W.; Fischer, Peter; Gstöhl, Stefan (23 October 2019). "Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release". ACS Applied Materials & Interfaces. 11 (42): 38578–38585. doi:10.1021/acsami.9b15896. PMID 31573787. S2CID 203638916.
  51. Siqueira, Gilberto; Kokkinis, Dimitri; Libanori, Rafael; Hausmann, Michael K.; Gladman, Amelia Sydney; Neels, Antonia; Tingaut, Philippe; Zimmermann, Tanja; Lewis, Jennifer A.; Studart, André R. (March 2017). "Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures". Advanced Functional Materials. 27 (12): 1604619. doi:10.1002/adfm.201604619. S2CID 33952694.
  52. Svagan, Anna J.; Samir, My A. S. Azizi; Berglund, Lars A. (2008). "Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native nanofibrils". Advanced Materials. 20 (7): 1263–1269. doi:10.1002/adma.200701215. S2CID 136370943.
  53. Pääkkö, Marjo; Jaana Vapaavuori; Riitta Silvennoinen; Harri Kosonen; Mikael Ankerfors; Tom Lindström; Lars A. Berglund; Olli Ikkala (2008). "Long and entangled nantive cellulose I nanofibers allow flexible aerogels and hierarchically templates for functionalities". Soft Matter. 4 (12): 2492–2499. Bibcode:2008SMat....4.2492P. doi:10.1039/b810371b.
  54. Heath, Lindy; Thielemans, W. (2010). "Cellulose nanowhisker aerogels". Green Chemistry. 12 (8): 1448–1453. doi:10.1039/c0gc00035c.
  55. Sehaqui, Houssine; Michaela Salajková; Qi Zhou; Lars A. Berglund (2010). "Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions". Soft Matter. 6 (8): 1824–1832. Bibcode:2010SMat....6.1824S. doi:10.1039/b927505c.
  56. Aulin, Christian; Julia Netrval; Lars Wågberg; Tom Lindström (2010). "Aerogels from nanofibrillated cellulose with tunable oleophobicity". Soft Matter. 6 (14): 3298. Bibcode:2010SMat....6.3298A. doi:10.1039/c001939a.
  57. Olsson, R. T.; Azizi Samir, M. A. S.; Salazar-Alvarez, G.; Belova, L.; Ström, V.; Berglund, L. A.; Ikkala, O.; Nogués, J.; Gedde, U. W. (2010). "Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates". Nature Nanotechnology. 5 (8): 584–8. Bibcode:2010NatNa...5..584O. doi:10.1038/nnano.2010.155. PMID 20676090.
  58. Kalashnikova, Irina; Bizot, Hervé; Cathala, Bernard; Capron, Isabelle (21 June 2011). "New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals". Langmuir. 27 (12): 7471–7479. doi:10.1021/la200971f. PMID 21604688.
  59. Kalashnikova, Irina; Bizot, Herve; Bertoncini, Patricia; Cathala, Bernard; Capron, Isabelle (2013). "Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions". Soft Matter. 9 (3): 952–959. Bibcode:2013SMat....9..952K. doi:10.1039/C2SM26472B.
  60. Bergfreund, Jotam; Sun, Qiyao; Fischer, Peter; Bertsch, Pascal (2019). "Adsorption of charged anisotropic nanoparticles at oil–water interfaces". Nanoscale Advances. 1 (11): 4308–4312. Bibcode:2019NanoA...1.4308B. doi:10.1039/C9NA00506D. PMC 9419606. PMID 36134395.
  61. Bai, Long; Lv, Shanshan; Xiang, Wenchao; Huan, Siqi; McClements, David Julian; Rojas, Orlando J. (November 2019). "Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability". Food Hydrocolloids. 96: 699–708. doi:10.1016/j.foodhyd.2019.04.038.
  62. Scheuble, Nathalie; Schaffner, Joschka; Schumacher, Manuel; Windhab, Erich J.; Liu, Dian; Parker, Helen; Steingoetter, Andreas; Fischer, Peter (30 May 2018). "Tailoring Emulsions for Controlled Lipid Release: Establishing in vitro–in Vivo Correlation for Digestion of Lipids". ACS Applied Materials & Interfaces. 10 (21): 17571–17581. doi:10.1021/acsami.8b02637.
  63. Bertsch, Pascal; Steingoetter, Andreas; Arnold, Myrtha; Scheuble, Nathalie; Bergfreund, Jotam; Fedele, Shahana; Liu, Dian; Parker, Helen L.; Langhans, Wolfgang; Rehfeld, Jens F.; Fischer, Peter (2022). "Lipid emulsion interfacial design modulates human in vivo digestion and satiation hormone response". Food & Function. 13 (17): 9010–9020. doi:10.1039/D2FO01247B.
  64. Bertsch, Pascal; Arcari, Mario; Geue, Thomas; Mezzenga, Raffaele; Nyström, Gustav; Fischer, Peter (12 November 2019). "Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces". Biomacromolecules. 20 (12): 4574–4580. doi:10.1021/acs.biomac.9b01384. PMID 31714073. S2CID 207943524.
  65. Jin, Huajin; Zhou, Weizheng; Cao, Jian; Stoyanov, Simeon D.; Blijdenstein, Theodorus B. J.; de Groot, Peter W. N.; Arnaudov, Luben N.; Pelan, Edward G. (2012). "Super stable foams stabilized by colloidal ethyl cellulose particles". Soft Matter. 8 (7): 2194–2205. Bibcode:2012SMat....8.2194J. doi:10.1039/c1sm06518a.
  66. Lee, Koon-Yang; Blaker, Jonny J.; Murakami, Ryo; Heng, Jerry Y. Y.; Bismarck, Alexander (8 January 2014). "Phase Behavior of Medium and High Internal Phase Water-in-Oil Emulsions Stabilized Solely by Hydrophobized Bacterial Cellulose Nanofibrils". Langmuir. 30 (2): 452–460. doi:10.1021/la4032514. PMID 24400918.
  67. Saidane, Dorra; Perrin, Emilie; Cherhal, Fanch; Guellec, Florian; Capron, Isabelle (28 July 2016). "Some modification of cellulose nanocrystals for functional Pickering emulsions". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2072): 20150139. Bibcode:2016RSPTA.37450139S. doi:10.1098/rsta.2015.0139. PMC 4920285. PMID 27298429.
  68. Peddireddy, Karthik R.; Nicolai, Taco; Benyahia, Lazhar; Capron, Isabelle (9 February 2016). "Stabilization of Water-in-Water Emulsions by Nanorods". ACS Macro Letters. 5 (3): 283–286. doi:10.1021/acsmacrolett.5b00953. PMID 35614722.
  69. Guan, Qing-Fang (2020). "Lightweight, Tough, and Sustainable Cellulose Nanofiber-Derived Bulk Structural Materials with Low Thermal Expansion Coefficient". Science Advances. American Association for the Advancement of Science. 6 (18): eaaz1114. Bibcode:2020SciA....6.1114G. doi:10.1126/sciadv.aaz1114. PMC 7195169. PMID 32494670.
  70. Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, M. Nogi, K.; Nakagaito, A. N.; Mangalam, A.; Simonsen, J.; Benight, A. S.; Bismarck, A.; Berglund, L. A.; Peijs, T. (2010). "Review: current international research into cellulose nanofibres and nanocomposites" (PDF). Journal of Materials Science. 45 (1): 1–33. Bibcode:2010JMatS..45....1E. doi:10.1007/s10853-009-3874-0. S2CID 137519458.
  71. Labet, M.; Thielemans, W (2011). "Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of e-caprolactone as a case study". Cellulose. 18 (3): 607–617. doi:10.1007/s10570-011-9527-x. S2CID 93187820.
  72. Vartiainen, J.; Pöhler, T.; Sirola, K.; Pylkkänen, L.; Alenius, H.; Hokkinen, J.; Tapper, U.; Lahtinen, P.; Kapanen, A.; Putkisto, K.; Hiekkataipale, K.; Eronen, P.; Ruokolainen, J.; Laukkanen, A. (2011). "Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose". Cellulose. 18 (3): 775–786. doi:10.1007/s10570-011-9501-7. S2CID 137455453.
  73. Brown, Elvie E.; Hu, Dehong; Abu Lail, Nehal; Zhang, Xiao (2013). "Potential of Nanocrystalline Cellulose–Fibrin Nanocomposites for Artificial Vascular Graft Applications". Biomacromolecules. 14 (4): 1063–71. doi:10.1021/bm3019467. PMID 23421631.
  74. Li, Shaohui; Lee, Pooi See (2017). "Development and applications of transparent conductive nanocellulose paper". Science and Technology of Advanced Materials. 18 (1): 620–633. Bibcode:2017STAdM..18..620L. doi:10.1080/14686996.2017.1364976. PMC 5613913. PMID 28970870.
  75. Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang (2015). "High-performance green flexible electronics based on biodegradable cellulose nanofibril paper". Nature Communications. 6: 7170. Bibcode:2015NatCo...6.7170J. doi:10.1038/ncomms8170. PMC 4455139. PMID 26006731.
  76. Taipale, T.; Österberg, M.; Nykänen, A.; Ruokolainen, J.; Laine, J. (2010). "Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength". Cellulose. 17 (5): 1005–1020. doi:10.1007/s10570-010-9431-9. S2CID 137591806.
  77. Eriksen, Ø.; Syverud, K.; Gregersen, Ø. W. (2008). "The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper". Nordic Pulp & Paper Research Journal. 23 (3): 299–304. doi:10.3183/npprj-2008-23-03-p299-304. S2CID 139009497.
  78. Ahola, S.; Österberg, M.; Laine, J. (2007). "Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive". Cellulose. 15 (2): 303–314. doi:10.1007/s10570-007-9167-3. S2CID 136939100.
  79. Syverud, K.; Stenius, P. (2008). "Strength and barrier properties of MFC films". Cellulose. 16: 75–85. doi:10.1007/s10570-008-9244-2. S2CID 136647719.
  80. Aulin, C.; Gällstedt, M.; Lindström, T. (2010). "Oxygen and oil barrier properties of microfibrillated cellulose films and coatings". Cellulose. 17 (3): 559–574. doi:10.1007/s10570-009-9393-y. S2CID 137623000.
  81. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. (2012). "Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review". Carbohydrate Polymers. 90 (2): 735–64. doi:10.1016/j.carbpol.2012.05.026. PMID 22839998.
  82. Missoum, K.; Martoïa, F.; Belgacem, M. N.; Bras, J. (2013). "Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials". Industrial Crops and Products. 48: 98–105. doi:10.1016/j.indcrop.2013.04.013.
  83. Kumar, Vinay; Elfving, Axel; Koivula, Hanna; Bousfield, Douglas; Toivakka, Martti (2016-03-30). "Roll-to-Roll Processed Cellulose Nanofiber Coatings". Industrial & Engineering Chemistry Research. 55 (12): 3603–3613. doi:10.1021/acs.iecr.6b00417. ISSN 0888-5885.
  84. Lavoine, Nathalie; Desloges, Isabelle; Khelifi, Bertine; Bras, Julien (April 2014). "Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper". Journal of Materials Science. 49 (7): 2879–2893. Bibcode:2014JMatS..49.2879L. doi:10.1007/s10853-013-7995-0. ISSN 0022-2461. S2CID 137327179.
  85. Aulin, Christian; Gällstedt, Mikael; Lindström, Tom (June 2010). "Oxygen and oil barrier properties of microfibrillated cellulose films and coatings". Cellulose. 17 (3): 559–574. doi:10.1007/s10570-009-9393-y. ISSN 0969-0239. S2CID 137623000.
  86. Mazhari Mousavi, Seyyed Mohammad; et al. (2016). "Cellulose nanofibers with higher solid content as a coating material to improve structure and barrier properties of paperboard". TAPPI Conference Proceedings: 1–7.
  87. Beneventi, Davide; Chaussy, Didier; Curtil, Denis; Zolin, Lorenzo; Gerbaldi, Claudio; Penazzi, Nerino (2014-07-09). "Highly Porous Paper Loading with Microfibrillated Cellulose by Spray Coating on Wet Substrates". Industrial & Engineering Chemistry Research. 53 (27): 10982–10989. doi:10.1021/ie500955x. ISSN 0888-5885.
  88. Kinnunen-Raudaskoski, K. (2014). "Thin coatings for paper by foam coating". TAPPI Journal. 13 (7): 9–19. doi:10.32964/TJ13.7.9.
  89. "Microfibrillated Cellulose in Barrier Coating Applications". October 2019. Retrieved 27 January 2020.
  90. Mittal, Nitesh; Ansari, Farhan; Gowda.V, Krishne; Brouzet, Christophe; Chen, Pan; Larsson, Per Tomas; Roth, Stephan V.; Lundell, Fredrik; Wågberg, Lars; Kotov, Nicholas A.; Söderberg, L. Daniel (2018-07-24). "Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers". ACS Nano. 12 (7): 6378–6388. doi:10.1021/acsnano.8b01084. ISSN 1936-0851. PMID 29741364.
  91. "Threads of nanocellulose stronger than spider silk". 17 October 2018. Retrieved 29 June 2020.
  92. Alves, L.; Ferraz, E.; Gamelas, J. A. F. (2019-10-01). "Composites of nanofibrillated cellulose with clay minerals: A review". Advances in Colloid and Interface Science. 272: 101994. doi:10.1016/j.cis.2019.101994. ISSN 0001-8686. PMID 31394436. S2CID 199507603.
  93. Gamelas, José António Ferreira; Ferraz, Eduardo (2015-08-05). "Composite Films Based on Nanocellulose and Nanoclay Minerals as High Strength Materials with Gas Barrier Capabilities: Key Points and Challenges". BioResources. 10 (4): 6310–6313. doi:10.15376/biores.10.4.6310-6313. ISSN 1930-2126.
  94. Gómez H., C.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. (2016-06-01). "Vegetable nanocellulose in food science: A review". Food Hydrocolloids. 57: 178–186. doi:10.1016/j.foodhyd.2016.01.023. ISSN 0268-005X.
  95. Xhanari, K.; Syverud, K.; Stenius, P. (2011). "Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio". Dispersion Science and Technology. 32 (3): 447–452. doi:10.1080/01932691003658942. S2CID 98317845.
  96. Lif, A.; Stenstad, P.; Syverud, K.; Nydén, M.; Holmberg, K. (2010). "Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose". Colloid and Interface Science. 352 (2): 585–592. Bibcode:2010JCIS..352..585L. doi:10.1016/j.jcis.2010.08.052. PMID 20864117.
  97. Syverud, K.; Kirsebom, H.; Hajizadeh, S.; Chinga-Carrasco, G. (12 December 2011). "Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels". Nanoscale Research Letters. 6 (1): 626. Bibcode:2011NRL.....6..626S. doi:10.1186/1556-276X-6-626. PMC 3260332. PMID 22152032.
  98. Granberg, Hjalmar; Håkansson, Karl; Fall, Andreas; Wågberg, Pia (5–8 May 2019). Electroactive papers, films, filaments, aerogels and hydrogels to realize the future of bio-based electronics. artikel-id PF4.1: PaperCon 2019, Indianapolis, USA: proceedings, TAPPI Press.{{cite book}}: CS1 maint: location (link)
  99. Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar; Khan, Zia Ullah; Andreasen, Jens W.; Liu, Xianjie; Zhao, Dan; Zhang, Hao; Yao, Yulong; Brill, Joseph W.; Engquist, Isak (2015-12-02). "An Organic Mixed Ion–Electron Conductor for Power Electronics". Advanced Science. 3 (2). doi:10.1002/advs.201500305. ISSN 2198-3844. PMC 5063141. PMID 27774392.
  100. Hamedi, Mahiar M.; Hajian, Alireza; Fall, Andreas B.; Håkansson, Karl; Salajkova, Michaela; Lundell, Fredrik; Wågberg, Lars; Berglund, Lars A. (2014-03-25). "Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes". ACS Nano. 8 (3): 2467–2476. doi:10.1021/nn4060368. ISSN 1936-0851. PMID 24512093.
  101. Erlandsson, Johan; López Durán, Verónica; Granberg, Hjalmar; Sandberg, Mats; Larsson, Per A.; Wågberg, Lars (2016-12-01). "Macro- and mesoporous nanocellulose beads for use in energy storage devices". Applied Materials Today. 5: 246–254. doi:10.1016/j.apmt.2016.09.008. ISSN 2352-9407.
  102. Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M. (2015). "Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries". Nature Communications. 6: 7259. Bibcode:2015NatCo...6.7259N. doi:10.1038/ncomms8259. ISSN 2041-1723. PMC 4458871. PMID 26021485.
  103. Wu, Changsheng; Wang, Aurelia C.; Ding, Wenbo; Guo, Hengyu; Wang, Zhong Lin (2019). "Triboelectric Nanogenerator: A Foundation of the Energy for the New Era". Advanced Energy Materials. 9 (1): 1802906. doi:10.1002/aenm.201802906. ISSN 1614-6840.
  104. Gray, Derek G.; Mu, Xiaoyue (2015-11-18). "Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy". Materials. 8 (11): 7873–7888. Bibcode:2015Mate....8.7873G. doi:10.3390/ma8115427. ISSN 1996-1944. PMC 5458898. PMID 28793684.
  105. Toivonen, Matti S.; Onelli, Olimpia D.; Jacucci, Gianni; Lovikka, Ville; Rojas, Orlando J.; Ikkala, Olli; Vignolini, Silvia (13 March 2018). "Anomalous-Diffusion-Assisted Brightness in White Cellulose Nanofibril Membranes". Advanced Materials. 30 (16): 1704050. doi:10.1002/adma.201704050. PMID 29532967.
  106. A1 WO application 2016174104 A1, Thomas Dandekar, "Modified bacterial nanocellulose and its uses in chip cards and medicine", published 2016-11-03, assigned to Julius-Maximilians-Universität Würzburg
  107. Garner, A. (2015-2016) U.S. Patent 9,222,174 "Corrosion inhibitor comprising cellulose nanocrystals and cellulose nanocrystals in combination with a corrosion inhibitor" and U.S. Patent 9,359,678 "Use of charged cellulose nanocrystals for corrosion inhibition and a corrosion inhibiting composition comprising the same".
  108. Kokkonen, Mikko; Nelo, Mikko; Liimatainen, Henrikki; Ukkola, Jonne; Tervo, Nuutti; Myllymäki, Sami; Juuti, Jari; Jantunen, Heli (7 February 2022). "Wood-based composite materials for ultralight lens antennas in 6G systems". Materials Advances. 3 (3): 1687–1694. doi:10.1039/D1MA00644D. S2CID 245723621.
  109. Ankerfors, Mikael (2012). Microfibrillated cellulose: Energy-efficient preparation techniques and key properties (PDF). Licentiate Thesis, Royal Institute of Technology (Sweden). ISBN 978-91-7501-464-7.
  110. Miller, Jack (Summer 2018). "2018- Cellulose Nanomaterials Production Update" (PDF). Tappi Nano. Retrieved 22 February 2021.
  111. Magazine, Smithsonian; Hansman, Heather. "Coming Soon: Helmets Made From Carrots". Smithsonian Magazine. Retrieved 2023-01-10.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.