Ampere (microarchitecture)

Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures. It was officially announced on May 14, 2020 and is named after French mathematician and physicist André-Marie Ampère.[1][2]

Ampere
LaunchedMay 14, 2020 (2020-05-14)
Designed byNvidia
Manufactured by
Fabrication processTSMC N7 (professional)
Samsung 8N (consumer)
Codename(s)GA10x
Product Series
Desktop
Professional/workstation
  • RTX A series
Server/datacenter
  • A100
Specifications
L1 cache128 KB (per SM)
L2 cache2 MB to 6 MB
Memory support
PCIe supportPCIe 4.0
Supported Graphics APIs
DirectXDirectX 12 Ultimate (12.2)
Direct3DDirect3D 12.0
Shader ModelShader Model 6.7
OpenCLOpenCL 3.0
OpenGLOpenGL 4.6
CUDACompute Capability 8.6
VulkanVulkan 1.3
Media Engine
Encode codecs
Decode codecs
Color bit-depth
  • 8-bit
  • 10-bit
Encoder(s) supportedNVENC
Display outputs
History
PredecessorTuring
SuccessorAda Lovelace (consumer)
Hopper (datacenter)
Support status
Supported
Engraving of André-Marie Ampère, eponym of architecture

Nvidia announced the Ampere architecture GeForce 30 series consumer GPUs at a GeForce Special Event on September 1, 2020.[3][4] Nvidia announced the A100 80GB GPU at SC20 on November 16, 2020.[5] Mobile RTX graphics cards and the RTX 3060 based on the Ampere architecture were revealed on January 12, 2021.[6]

Nvidia announced Ampere's successor, Hopper, at GTC 2022, and "Ampere Next Next" for a 2024 release at GPU Technology Conference 2021.

Details

Architectural improvements of the Ampere architecture include the following:

  • CUDA Compute Capability 8.0 for A100 and 8.6 for the GeForce 30 series[7]
  • TSMC's 7 nm FinFET process for A100
  • Custom version of Samsung's 8 nm process (8N) for the GeForce 30 series[8]
  • Third-generation Tensor Cores with FP16, bfloat16, TensorFloat-32 (TF32) and FP64 support and sparsity acceleration.[9] The individual Tensor cores have with 256 FP16 FMA operations per second 4x processing power (GA100 only, 2x on GA10x) compared to previous Tensor Core generations; the Tensor Core Count is reduced to one per SM.
  • Second-generation ray tracing cores; concurrent ray tracing, shading, and compute for the GeForce 30 series
  • High Bandwidth Memory 2 (HBM2) on A100 40GB & A100 80GB
  • GDDR6X memory for GeForce RTX 3090, RTX 3080 Ti, RTX 3080, RTX 3070 Ti
  • Double FP32 cores per SM on GA10x GPUs
  • NVLink 3.0 with a 50Gbit/s per pair throughput[9]
  • PCI Express 4.0 with SR-IOV support (SR-IOV is reserved only for A100)
  • Multi-instance GPU (MIG) virtualization and GPU partitioning feature in A100 supporting up to seven instances
  • PureVideo feature set K hardware video decoding with AV1 hardware decoding[10] for the GeForce 30 series and feature set J for A100
  • 5 NVDEC for A100
  • Adds new hardware-based 5-core JPEG decode (NVJPG) with YUV420, YUV422, YUV444, YUV400, RGBA. Should not be confused with Nvidia NVJPEG (GPU-accelerated library for JPEG encoding/decoding)

Chips

  • GA100[11]
  • GA102
  • GA103
  • GA104
  • GA106
  • GA107

Comparison of Compute Capability: GP100 vs GV100 vs GA100[12]

GPU features NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100
GPU codename GP100 GV100 GA100
GPU architecture NVIDIA Pascal NVIDIA Volta NVIDIA Ampere
Compute capability 6.0 7.0 8.0
Threads / warp 32 32 32
Max warps / SM 64 64 64
Max threads / SM 2048 2048 2048
Max thread blocks / SM 32 32 32
Max 32-bit registers / SM 65536 65536 65536
Max registers / block 65536 65536 65536
Max registers / thread 255 255 255
Max thread block size 1024 1024 1024
FP32 cores / SM 64 64 64
Ratio of SM registers to FP32 cores 1024 1024 1024
Shared Memory Size / SM 64 KB Configurable up to 96 KB Configurable up to 164 KB

Comparison of Precision Support Matrix[13][14]

Supported CUDA Core Precisions Supported Tensor Core Precisions
FP16 FP32 FP64 INT1 INT4 INT8 TF32 BF16 FP16 FP32 FP64 INT1 INT4 INT8 TF32 BF16
NVIDIA Tesla P4 NoYesYesNoNoYesNoNoNoNoNoNoNoNoNoNo
NVIDIA P100 YesYesYesNoNoNoNoNoNoNoNoNoNoNoNoNo
NVIDIA Volta YesYesYesNoNoYesNoNoYesNoNoNoNoNoNoNo
NVIDIA Turing YesYesYesNoNoNoNoNoYesNoNoYesYesYesNoNo
NVIDIA A100 YesYesYesNoNoYesNoYesYesNoYesYesYesYesYesYes

Legend:

  • FPnn: floating point with nn bits
  • INTn: integer with n bits
  • INT1: binary
  • TF32: TensorFloat32
  • BF16: bfloat16

Comparison of Decode Performance

Concurrent streams H.264 decode (1080p30) H.265 (HEVC) decode (1080p30) VP9 decode (1080p30)
V100 16 22 22
A100 75 157 108

A100 accelerator and DGX A100

The Ampere-based A100 accelerator was announced and released on May 14, 2020.[9] The A100 features 19.5 teraflops of FP32 performance, 6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth.[15] The A100 accelerator was initially available only in the 3rd generation of DGX server, including 8 A100s.[9] Also included in the DGX A100 is 15TB of PCIe gen 4 NVMe storage,[15] two 64-core AMD Rome 7742 CPUs, 1 TB of RAM, and Mellanox-powered HDR InfiniBand interconnect. The initial price for the DGX A100 was $199,000.[9]

Comparison of accelerators used in DGX:[16][17][18]



Accelerator
H100
A100 80GB
A100 40GB
V100 32GB
V100 16GB
P100
ArchitectureSocketFP32
CUDA
Cores
FP64 Cores
(excl. Tensor)
Mixed
INT32/FP32
Cores
INT32
Cores
Boost
Clock
Memory
Clock
Memory
Bus Width
Memory
Bandwidth
VRAMSingle
Precision
(FP32)
Double
Precision
(FP64)
INT8
(non-Tensor)
INT8
Dense Tensor
INT32FP16FP16
Dense Tensor
bfloat16
Dense Tensor
TensorFloat-32
(TF32)
Dense Tensor
FP64
Dense Tensor
Interconnect
(NVLink)
GPUL1 Cache SizeL2 Cache SizeTDPGPU
Die Size
Transistor
Count
Manufacturing Process
HopperSXM516896460816896N/A1780 MHz4.8Gbit/s HBM35120-bit3072GB/sec80GB60 TFLOPs30 TFLOPsN/A4000 TOPsN/AN/A2000 TFLOPs2000 TFLOPs1000 TFLOPs60 TFLOPs900GB/secGH10025344KB(192KBx132)51200 KB700W814 mm280BTSMC 4 nm N4
AmpereSXM4691234566912N/A1410 MHz3.2Gbit/s HBM25120-bit2039GB/sec80GB19.5 TFLOPs9.7 TFLOPsN/A624 TOPs19.5 TOPs78 TFLOPs312 TFLOPs312 TFLOPs156 TFLOPs19.5 TFLOPs600GB/secGA10020736KB(192KBx108)40960 KB400W826 mm254.2BTSMC 7 nm N7
AmpereSXM4691234566912N/A1410 MHz2.4Gbit/s HBM25120-bit1555GB/sec40GB19.5 TFLOPs9.7 TFLOPsN/A624 TOPs19.5 TOPs78 TFLOPs312 TFLOPs312 TFLOPs156 TFLOPs19.5 TFLOPs600GB/secGA10020736KB(192KBx108)40960 KB400W826 mm254.2BTSMC 7 nm N7
VoltaSXM351202560N/A51201530 MHz1.75Gbit/s HBM24096-bit900GB/sec32GB15.7 TFLOPs7.8 TFLOPs62 TOPsN/A15.7 TOPs31.4 TFLOPs125 TFLOPsN/AN/AN/A300GB/secGV10010240KB(128KBx80)6144 KB350W815 mm221.1BTSMC 12 nm FFN
VoltaSXM251202560N/A51201530 MHz1.75Gbit/s HBM24096-bit900GB/sec16GB15.7 TFLOPs7.8 TFLOPs62 TOPsN/A15.7 TOPs31.4 TFLOPs125 TFLOPsN/AN/AN/A300GB/secGV10010240KB(128KBx80)6144 KB300W815 mm221.1BTSMC 12 nm FFN
PascalSXM/SXM2N/A17923584N/A1480 MHz1.4Gbit/s HBM24096-bit720GB/sec16GB10.6 TFLOPs5.3 TFLOPsN/AN/AN/A21.2 TFLOPsN/AN/AN/AN/A160GB/secGP1001344KB(24KBx56)4096 KB300W610 mm215.3BTSMC 16 nm FinFET+

Products using Ampere

  • GeForce MX series
    • GeForce MX570 (mobile) (GA107)
  • GeForce 20 series
    • GeForce RTX 2050 (mobile) (GA107)
  • GeForce 30 series
    • GeForce RTX 3050 Laptop GPU (GA107)
    • GeForce RTX 3050 (GA106 or GA107)[19]
    • GeForce RTX 3050 Ti Laptop GPU (GA107)
    • GeForce RTX 3060 Laptop GPU (GA106)
    • GeForce RTX 3060 (GA106 or GA104)[20]
    • GeForce RTX 3060 Ti (GA104 or GA103)[21]
    • GeForce RTX 3070 Laptop GPU (GA104)
    • GeForce RTX 3070 (GA104)
    • GeForce RTX 3070 Ti Laptop GPU (GA104)
    • GeForce RTX 3070 Ti (GA104 or GA102)[22]
    • GeForce RTX 3080 Laptop GPU (GA104)
    • GeForce RTX 3080 (GA102)
    • GeForce RTX 3080 12GB (GA102)
    • GeForce RTX 3080 Ti Laptop GPU (GA103)
    • GeForce RTX 3080 Ti (GA102)
    • GeForce RTX 3090 (GA102)
    • GeForce RTX 3090 Ti (GA102)
  • Nvidia Workstation GPUs (formerly Quadro)
    • RTX A1000 (mobile) (GA107)
    • RTX A2000 (mobile) (GA107)
    • RTX A2000 (GA106)
    • RTX A3000 (mobile) (GA104)
    • RTX A4000 (mobile) (GA104)
    • RTX A4000 (GA104)
    • RTX A4500 (GA102)
    • RTX A5000 (mobile) (GA104)
    • RTX A5000 (GA102)
    • RTX A5500 (GA102)
    • RTX A6000 (GA102)
  • Nvidia Data Center GPUs (formerly Tesla)
    • Nvidia A2 (GA107)
    • Nvidia A10 (GA102)
    • Nvidia A16 (4 × GA107)
    • Nvidia A30 (GA100)
    • Nvidia A40 (GA102)
    • Nvidia A100 (GA100)
    • Nvidia A100 80GB (GA100)
Products using Ampere (per Chip)
GA107GA106GA104GA103GA102GA100
GeForce MX series GeForce MX570 (mobile)
GeForce 20 series GeForce RTX 2050 (mobile)
GeForce 30 series GeForce RTX 3050 Laptop
GeForce RTX 3050[19]
GeForce RTX 3050 Ti Laptop
GeForce RTX 3050
GeForce RTX 3060 Laptop
GeForce RTX 3060
GeForce RTX 3060[20]
GeForce RTX 3060 Ti
GeForce RTX 3070 Laptop
GeForce RTX 3070
GeForce RTX 3070 Ti Laptop
GeForce RTX 3070 Ti
GeForce RTX 3080 Laptop
GeForce RTX 3060 Ti[21]
GeForce RTX 3080 Ti Laptop
GeForce RTX 3070 Ti[22]
GeForce RTX 3080
GeForce RTX 3080 Ti
GeForce RTX 3090
GeForce RTX 3090 Ti
Nvidia Workstation GPUs RTX A2000 (mobile)RTX A2000RTX A3000 (mobile)
RTX A4000 (mobile)
RTX A4000
RTX A5000 (mobile)
RTX A4500
RTX A5000
RTX A5500
RTX A6000
Nvidia Data Center GPUs Nvidia A2
Nvidia A16
Nvidia A10
Nvidia A40
Nvidia A30
Nvidia A100

See also

References

  1. Newsroom, NVIDIA. "NVIDIA's New Ampere Data Center GPU in Full Production". NVIDIA Newsroom Newsroom.
  2. "NVIDIA Ampere Architecture In-Depth". NVIDIA Developer Blog. May 14, 2020.
  3. "NVIDIA Delivers Greatest-Ever Generational Leap with GeForce RTX 30 Series GPUs". Nvidia Newsroom. September 1, 2020. Retrieved April 9, 2023.
  4. "NVIDIA GeForce Ultimate Countdown". Nvidia.
  5. "NVIDIA Doubles Down: Announces A100 80GB GPU, Supercharging World's Most Powerful GPU for AI Supercomputing". Nvidia Newsroom. November 16, 2020. Retrieved April 9, 2023.
  6. "NVIDIA GeForce Beyond at CES 2023". NVIDIA.
  7. "I.7. Compute Capability 8.x". Nvidia. Retrieved September 23, 2020.
  8. Bosnjak, Dominik (September 1, 2020). "Samsung's old 8nm tech at the heart of NVIDIA's monstrous Ampere cards". SamMobile. Retrieved September 19, 2020.
  9. Smith, Ryan (May 14, 2020). "NVIDIA Ampere Unleashed: NVIDIA Announces New GPU Architecture, A100 GPU, and Accelerator". AnandTech.
  10. Delgado, Gerardo (September 1, 2020). "GeForce RTX 30 Series GPUs: Ushering In A New Era of Video Content With AV1 Decode". Nvidia. Retrieved April 9, 2023.
  11. Morgan, Timothy Prickett (May 29, 2020). "Diving Deep Into The Nvidia Ampere GPU Architecture". The Next Platform. Retrieved March 24, 2022.
  12. "NVIDIA A100 Tensor Core GPU Architecture: Unprecedented Accerlation at Every Scale" (PDF). Nvidia. Retrieved September 18, 2020.
  13. "NVIDIA Tensor Cores: Versatility for HPC & AI". NVIDIA.
  14. "Abstract". docs.nvidia.com.
  15. Tom Warren; James Vincent (May 14, 2020). "Nvidia's first Ampere GPU is designed for data centers and AI, not your PC". The Verge.
  16. Smith, Ryan (March 22, 2022). "NVIDIA Hopper GPU Architecture and H100 Accelerator Announced: Working Smarter and Harder". AnandTech.
  17. Smith, Ryan (May 14, 2020). "NVIDIA Ampere Unleashed: NVIDIA Announces New GPU Architecture, A100 GPU, and Accelerator". AnandTech.
  18. "NVIDIA Tesla V100 tested: near unbelievable GPU power". TweakTown. September 17, 2017.
  19. Igor, Wallossek (February 13, 2022). "The two faces of the GeForce RTX 3050 8GB". Igor's Lab. Retrieved February 23, 2022.
  20. Shilov, Anton (September 25, 2021). "Gainward and Galax List GeForce RTX 3060 Cards With GA104 GPU". Tom's Hardware. Retrieved September 23, 2022.
  21. Tyson, Mark (February 23, 2022). "Zotac Debuts First RTX 3060 Ti Desktop Cards With GA103 GPU". Tom's Hardware. Retrieved September 23, 2022.
  22. WhyCry (October 26, 2022). "ZOTAC launches GeForce RTX 3070 Ti with GA102-150 GPU". VideoCardz. Retrieved May 21, 2023.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.