Mathisson–Papapetrou–Dixon equations
In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.
General relativity |
---|
|
They are named for M. Mathisson,[1] W. G. Dixon,[2] and A. Papapetrou.[3]
Throughout, this article uses the natural units c = G = 1, and tensor index notation.
Mathisson–Papapetrou–Dixon equations
The Mathisson–Papapetrou–Dixon (MPD) equations for a mass spinning body are
Here is the proper time along the trajectory, is the body's four-momentum
the vector is the four-velocity of some reference point in the body, and the skew-symmetric tensor is the angular momentum
of the body about this point. In the time-slice integrals we are assuming that the body is compact enough that we can use flat coordinates within the body where the energy-momentum tensor is non-zero.
As they stand, there are only ten equations to determine thirteen quantities. These quantities are the six components of , the four components of and the three independent components of . The equations must therefore be supplemented by three additional constraints which serve to determine which point in the body has velocity . Mathison and Pirani originally chose to impose the condition which, although involving four components, contains only three constraints because is identically zero. This condition, however, does not lead to a unique solution and can give rise to the mysterious "helical motions".[4] The Tulczyjew–Dixon condition does lead to a unique solution as it selects the reference point to be the body's center of mass in the frame in which its momentum is .
Accepting the Tulczyjew–Dixon condition , we can manipulate the second of the MPD equations into the form
This is a form of Fermi–Walker transport of the spin tensor along the trajectory – but one preserving orthogonality to the momentum vector rather than to the tangent vector . Dixon calls this M-transport.
See also
References
Notes
- M. Mathisson (1937). "Neue Mechanik materieller Systeme". Acta Physica Polonica. Vol. 6. pp. 163–209.
- W. G. Dixon (1970). "Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum". Proc. R. Soc. Lond. A. 314 (1519): 499–527. Bibcode:1970RSPSA.314..499D. doi:10.1098/rspa.1970.0020. S2CID 119632715.
- A. Papapetrou (1951). "Spinning Test-Particles in General Relativity. I". Proc. R. Soc. Lond. A. 209 (1097): 248–258. Bibcode:1951RSPSA.209..248P. doi:10.1098/rspa.1951.0200. S2CID 121464697.
- L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". AIP Conf. Proc. AIP Conference Proceedings. 1458: 367–370. arXiv:1206.7093. Bibcode:2012AIPC.1458..367C. doi:10.1063/1.4734436. S2CID 119306409.
Selected papers
- C. Chicone; B. Mashhoon; B. Punsly (2005). "Relativistic motion of spinning particles in a gravitational field". Physics Letters A. 343 (1–3): 1–7. arXiv:gr-qc/0504146. Bibcode:2005PhLA..343....1C. doi:10.1016/j.physleta.2005.05.072. hdl:10355/8357. S2CID 56132009.
- N. Messios (2007). "Spinning Particles in Spacetimes with Torsion". International Journal of Theoretical Physics. General Relativity and Gravitation. Springer. 46 (3): 562–575. Bibcode:2007IJTP...46..562M. doi:10.1007/s10773-006-9146-8. S2CID 119514028.
- D. Singh (2008). "An analytic perturbation approach for classical spinning particle dynamics". International Journal of Theoretical Physics. General Relativity and Gravitation. Springer. 40 (6): 1179–1192. arXiv:0706.0928. Bibcode:2008GReGr..40.1179S. doi:10.1007/s10714-007-0597-x. S2CID 7255389.
- L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". AIP Conf. Proc. AIP Conference Proceedings. 1458: 367–370. arXiv:1206.7093. Bibcode:2012AIPC.1458..367C. doi:10.1063/1.4734436. S2CID 119306409.
- R. M. Plyatsko (1985). "Addition of the Pirani condition to the Mathisson-Papapetrou equations in a Schwarzschild field". Soviet Physics Journal. Springer. 28 (7): 601–604. Bibcode:1985SvPhJ..28..601P. doi:10.1007/BF00896195. S2CID 121704297.
- R.R. Lompay (2005). "Deriving Mathisson-Papapetrou equations from relativistic pseudomechanics". arXiv:gr-qc/0503054.
- R. Plyatsko (2011). "Can Mathisson-Papapetrou equations give clue to some problems in astrophysics?". arXiv:1110.2386 [gr-qc].
- M. Leclerc (2005). "Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation". Classical and Quantum Gravity. 22 (16): 3203–3221. arXiv:gr-qc/0505021. Bibcode:2005CQGra..22.3203L. doi:10.1088/0264-9381/22/16/006. S2CID 2569951.
- R. Plyatsko; O. Stefanyshyn; M. Fenyk (2011). "Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds". Classical and Quantum Gravity. 28 (19): 195025. arXiv:1110.1967. Bibcode:2011CQGra..28s5025P. doi:10.1088/0264-9381/28/19/195025. S2CID 119213540.
- R. Plyatsko; O. Stefanyshyn (2008). "On common solutions of Mathisson equations under different conditions". arXiv:0803.0121. Bibcode:2008arXiv0803.0121P.
{{cite journal}}
: Cite journal requires|journal=
(help) - R. M. Plyatsko; A. L. Vynar; Ya. N. Pelekh (1985). "Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction". Soviet Physics Journal. Springer. 28 (10): 773–776. Bibcode:1985SvPhJ..28..773P. doi:10.1007/BF00897946. S2CID 119799125.
- K. Svirskas; K. Pyragas (1991). "The spherically-symmetrical trajectories of spin particles in the Schwarzschild field". Astrophysics and Space Science. Springer. 179 (2): 275–283. Bibcode:1991Ap&SS.179..275S. doi:10.1007/BF00646947. S2CID 120108333.