Paranormal subgroup
In mathematics, in the field of group theory, a paranormal subgroup is a subgroup such that the subgroup generated by it and any conjugate of it, is also generated by it and a conjugate of it within that subgroup.
In symbols, is paranormal in if given any in , the subgroup generated by and is also equal to . Equivalently, a subgroup is paranormal if its weak closure and normal closure coincide in all intermediate subgroups.
Here are some facts relating paranormality to other subgroup properties:
- Every pronormal subgroup, and hence, every normal subgroup and every abnormal subgroup, is paranormal.
- Every paranormal subgroup is a polynormal subgroup.
- In finite solvable groups, every polynormal subgroup is paranormal.
External links
Kantor, William M.; Martino, Lino Di (12 January 1995). Groups of Lie Type and Their Geometries. Cambridge University Press. pp. 257–259. ISBN 9780521467902.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.