Phratora laticollis

Phratora laticollis is a species of leaf beetle found in Europe and Asia.[1][2] This beetle is found on Populus species[3] and the chemistry and production of its larval defensive secretions and host plant relationships have been studied extensively.[4][5]

Phratora laticollis
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Infraorder: Cucujiformia
Family: Chrysomelidae
Genus: Phratora
Species:
P. laticollis
Binomial name
Phratora laticollis
(Suffrian, 1851)

Description

This small (3.7–5 mm) beetle is similar and size and coloration to other species of Phratora. Adults are typically metallic blue or green.[6] In Europe, it is most likely to co-occur on Populus host species with two other Phratora species Phratora vitellinae and Phratora atrovirens. It is larger and more abundant[7][8] than P. atrovirens and somewhat narrower in body shape than P. vitellinae.[3] Eggs are typically laid in clutches of 8–16, arranged in rows on the underside of the host leaf. Like other Phratora species, eggs are partially covered with a crusty secretion.[9][10] Larvae feed in groups in early instars (molts),[9] and sometimes show color polymorphisms.[3]

Range

Phratora laticollis has a widespread distribution. In Europe, it is found in Arctic regions[11] and the Nordic countries,[12] the United Kingdom,[13][6] Germany[8][3] to Spain,[14] Serbia and Bosnia,[15] and Bulgaria.[7] It is also found in China and elsewhere in Asia.[2][16][17] Populations occur at high elevations in parts of central Europe[18] and China.[17]

Habitat and host plants

Phratora laticollis adults feed and lay eggs on Populus trees, including Populus tremula,[9][19][20] Populus nigra,[20] and Populus alba.[8] Their larvae develop on the same host plants as adults.[3] Their host plants belong to the family Salicaceae, but unlike the willow species (Salix) that other Phratora species favor, Populus species all contain relatively high levels of salicylates in their leaves.[19] Laboratory feeding tests showed that the phenol glycosides (salicylates) characteristic of Populus species stimulate P. laticollis feeding.[21] They are also attracted to volatile compounds emitted by host trees, which may explain preferences based on host plant gender and prior history of insect herbivory.[5]

Life history

Lühmann (1939)[9] described the life history of a population in Germany in detail. After overwintering, adult beetles seek mid-sized trees of Populus tremula within aspen groves for feeding, oviposition, and production of the summer generation. When spring arrives, overwintered beetles spend 2–3 weeks feeding and lay up to 250 eggs on the undersides of leaves. After eggs hatched, larvae spent about 5–6 days in the first, second, and third instars before leaving the host plant and making a pupal case. After about six days, adults emerge and remain in the pupal case for an additional two days before emerging. In central Europe, this species can experience multiple generations per growing season (multivoltine), but it appears to undergo only one generation per summer in the Nordic countries or at high elevations. Overwintering was observed under the bark of fir trees near the Populus tremula stand where beetle populations had been found.[9]

Van der Laak (1982)[22] investigated the mechanisms of cold tolerance and overwintering success in P. laticollis. These studies revealed that P. laticollis can be 'freeze-tolerant' in summer and winter.[23] Multiple mechanisms influence cold tolerance and it varies over the year partly due to the concentration of metabolic products such as glycerol and other factors.[22]

Larval secretion chemistry

Phratora laticollis larvae secrete a defensive secretion that contains iridoid monoterpenes that they synthesize themselves (autogeneously), while their congener Phratora vitellinae sequesters host plant salicylates to make its larval defensive secretion.[24][25][26][4][27] Using host plant compounds to make the larval defensive secretions appears to be the evolutionarily advanced or derived state of this trait,[19] but P. laticollis appears to be pre-adapted to evolve the use of host plant salicylates to produce its defensive secretion.[28] Larvae of P. laticollis already possess systems to transport plant secondary compounds that can be modified to sequester those compounds for their own defense.[29][30]

Natural enemies

Lühmann (1939)[9] described a fly predator that consumed the eggs and larvae of P. laticollis and these descriptions suggest that it was the syrphid fly Parasyrphus nigritarsis. He also mentioned the presence of tachinid fly parasitoids that attacked P. laticollis larvae but emerged when the beetle reached the adult stage. These parasitoids might be Medina luctuosa, which others observed attacking P. laticollis adults along with a braconid wasp in the genus Perilitus,[3] which is likely Perilitus brevicollis, a known parasitoid of Phratora vulgatissima.[31] Larvae are also parasitized by Meigenia mutabilis, a tachinid fly[6] The bug Rhacognathus punctatus consumes adult beetles.[3] Most likely, the bug Anthocorus nemorum consumes P. laticollis larvae.[32] The wasp Symmorphus bifasciatus feeds on larvae of Phratora species, including P. laticollis.[33] Overall, many of the same species that feed on P. laticollis also consume other Phratora species and other leaf beetles, which often occur on the same host plants and similar habitats.[32][34] Some of these enemies appear to be attracted to leaf beetle secretions.[35]

Taxonomy

Species in the genus Phratora are morphologically fairly uniform, but vary substantially in their host plant preferences.[19] Ge (2005) noted that a newly described Phratora species in China, P. quadrithoralis, closely resembles P. laticollis.[36] Within Europe, the closest relative to P. laticollis appears to be another specialist on Populus, P. atrovirens.[19]

References

  1. Warchalowski, A. (2003) Chrysomelidae. The Leaf-beetles of Europe and the Mediterranean Area. Warsawa: Natura Optima Dux.
  2. Gressitt, J. L.; Kimoto, S. (1963). "The Chrysomelidae (Coleopt.) of China and Korea, Part 2". Pacific Insects Monograph. 1b: 301–1026.
  3. Görnandt, H. (1955). "Die Käfergattung Phyllodecta Kirby". Deutsche Entomologische Zeitschrift. 2: 1–100. doi:10.1002/mmnd.19550020102.
  4. Pasteels, J. M.; Rowell-Rahier, M.; Braekman, J. C.; Daloze, D. (1984). "Chemical defenses in leaf beetles and their larvae: their ecological, evolutionary and taxonomic significance" (PDF). Biochemical Systematics and Ecology. 12 (4): 395–406. doi:10.1016/0305-1978(84)90071-1. S2CID 83537954.
  5. Li, T.; Grauer-Gray, K.; Holopainen, J. K.; Blande, J. D. (2020). "Herbivore gender effects on volatile induction in aspen and on olfactory responses in leaf beetles". Forests. 11 (6): 638. doi:10.3390/F11060638.
  6. "Phratora laticollis Suffrian, 1851". UK Beetle Recording. Retrieved 2021-07-07.
  7. Warchalowski, A. (1974). "Übersicht der Blattkäfer Bulgariens (Coleoptera, Chrysomelidae)". Polskie Pismo Entomologiczne. 44: 473–542.
  8. Reitter, E. (1912). Fauna Germanica: Die Käfer des deutschen Reiches. Vol. 4. Stuttgart: K.G. Lutz Verlag.
  9. Lühmann, M. (1939). "Beiträge zur Biologie der Chrysomeliden. 6. Beobachtungen an Phyllodecta laticollis". Entomologische Blätter. 35: 291–294.
  10. Von Lengerken, H. (1954). Die Brutfürsorge- und Brutpflegeinstinkte der Käfer. Leipzig: Akademische Verlagsgesellschaft Geest & Portig.
  11. Silverberg, H. (1994). "Chrysomelidae in the Arctic". In P. H. Jolivet; M. L. Cox; E. Petitpierre (eds.). Novel aspects of the biology of Chrysomelidae. Vol. 50. Dordrecht: Kluwer Academic. pp. 503–510.
  12. Munster, T. (1935). "Norwegian Chrysomelids". Norsk Entomolgisk Tidsskrift. 4: 1–8.
  13. Joy, N. H. (1976). A practical handbook of British beetles. Vol. 1. Oxon, England: E.W. Classey Ltd.
  14. Petitpierre, E. (1988). "Catàleg dels coleopters crisomèlids de Catalunya, III. Chrysomelinae i Galerucinae". Butlleti de la Institucio Catalana d'Historia Natural. 55: 79–100.
  15. Gruev, B. (1979). "Chrysomelidae (Coleoptera) Jugoslawiens (Unterfamilien: Lamprosomatinae, Eumolpinae, Chrysomelinae, Alticinae, Cassidinae)". Deutsche Entomologische Zeitschrift. 26 (1–3): 153–164.
  16. Chen, S. H. (1965). "On the Chinese species of the chrysomeline genus Phratora". Acta Zootaxonomica Sinica. 2 (3): 218–224.
  17. Shuyong, W. (1992). "Coleoptera: Chrysomelidae- Chrysomelinae". Insects of the Hengduan Mountains Region. 1 (5): 628–645.
  18. von Peez, A.; Kahlen, M. (1977). Die Käfer von Südtirol: faunistisches Verzeichnis der aus der Provinz Bozen bisher bekannt gewordenen Koleopteren. Veröffentlichungen des Museum Ferdinandeum. Vol. 2. Innsbruck: Selbstverlag des Tiroler Landesmuseum Ferdinandeum.
  19. Köpf, A.; Rank, N. E.; Roininen, H.; Julkunen-Tiitto, R.; Pasteels, J. M.; Tahvanainen, J. (1998). "The evolution of host-plant use and sequestration in the leaf beetle genus Phratora (Coleoptera: Chrysomelidae)". Evolution. 52 (2): 517–528. doi:10.1111/j.1558-5646.1998.tb01651.x. PMID 28568343. S2CID 24641299.
  20. Cornelius, H. (1857). "Ernährung und Entwicklung einiger Blattkäfer. 5. Chrysomela (Phratora) vitellinae Lin., tibialis Strm., atro-virens m., vulgatissima Lin., laticollis Suffr" (PDF). Stettiner Entomologische Zeitung. 18: 392–405.
  21. Gregoire, J. C. (1978). "Discrimination between Salix and Populus by Phyllodecta laticollis (Coleoptera: Chrysomelidae)". Entomologia Experimentalis et Applicata. 24 (3): 175–181. doi:10.1111/j.1570-7458.1978.tb02796.x. S2CID 84125847.
  22. Van der Laak, S. (1982). "Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles". Comparative Biochemistry and Physiology A. 73 (4): 613–620. doi:10.1016/0300-9629(82)90268-7.
  23. Somme, L. (1999). "The physiology of cold hardiness in terrestrial arthropods". European Journal of Entomology. 96 (1): 1–10.
  24. Pasteels, J. M.; Rowell-Rahier, M.; Raupp, M. J. (1988). "Plant-derived defense in chrysomelid beetles". In P. Barbosa; D. K. Letourneau (eds.). Novel aspects of insect-plant interactions. New York: Wiley. pp. 235–271.
  25. Kirsch, Roy; Vogel, Heiko; Muck, Alexander; Vilcinskas, Andreas; Pasteels, Jacques M.; Boland, Wilhelm (2011). "To be or not to be convergent in salicin-based defence in chrysomeline leaf beetle larvae: evidence from Phratora vitellinae salicyl alcohol oxidase". Proceedings of the Royal Society B: Biological Sciences. 278 (1722): 3225–3232. doi:10.1098/rspb.2011.0175. PMC 3169026. PMID 21429930.
  26. Pasteels, J. M.; Rowell-Rahier, M.; Braekman, J. C.; Dupont, A. (1983). "Salicin from host plant as precursor of salicylaldehyde in defensive secretion of chrysomeline larvae". Physiological Entomology. 8 (3): 307–314. doi:10.1111/j.1365-3032.1983.tb00362.x. S2CID 85066862.
  27. Rank, N. E.; Köpf, A.; Julkunen-Tiitto, R.; Tahvanainen, J. (1998). "Host preference and larval performance of the salicylate-using leaf beetle Phratora vitellinae". Ecology. 79 (2): 618–631. doi:10.1890/0012-9658(1998)079[0618:HPALPO]2.0.CO;2.
  28. Soetens, P.; Pasteels, J. M.; Daloze, D. (1993). "A simple method for in vivo testing of glandular enzymatic activity on potential precursors of larval defensive compounds in Phratora species (Coleoptera: Chrysomelidae)". Experientia. 49 (11): 1024–1026. doi:10.1007/BF02125653. S2CID 32185705.
  29. Kuhn, J.; Pettersson, E. M.; Feld, B. K.; Burse, A.; Termonia, A.; Pasteels, J. M.; Boland, W. (2004). "Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution". Proceedings of the National Academy of Sciences of the United States of America. 101 (38): 13808–13813. Bibcode:2004PNAS..10113808K. doi:10.1073/pnas.0402576101. PMC 518838. PMID 15365181.
  30. Kunert, M.; Søe, A.; Bartram, S.; Discher, S.; Tolzin-Banasch, K.; Nie, L.; David, A.; Pasteels, J.; Boland, W. (2008). "De novo biosynthesis versus sequestration: A network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense". Insect Biochemistry and Molecular Biology. 38 (10): 895–904. doi:10.1016/j.ibmb.2008.06.005. PMID 18687400.
  31. J.A. Stenberg (2012). "Plant-mediated effects of different Salix species on the performance of the braconid parasitoid Perilitus brevicollis". Biological Control. 60: 54–58. doi:10.1016/j.biocontrol.2011.09.004.
  32. Rank, N. E.; Smiley, J. T.; Köpf, A. (1996). "Natural enemies and host plant relationships for chrysomeline leaf beetles feeding on Salicaceae". In P. H. Jolivet; M. L. Cox (eds.). Chrysomelidae Biology. Vol. 2: Ecological Studies. Amsterdam: SPB Publishing. pp. 147–171.
  33. Budriene, A. (2003). "Prey of Symmorphus wasps (Hymenoptera, Eumeninae) in Lithuania". Acta Zoologica Lituanica. 13 (3): 306–310. doi:10.1080/13921657.2003.10512686.
  34. Cox, M. L. (1994). "The Hymenoptera and Diptera parasitoids of Chrysomelidae". In P. H. Jolivet; M. L. Cox; E. Petitpierre (eds.). Novel aspects of the biology of Chrysomelidae. Vol. 50. Dordrecht: Kluwer Academic. pp. 419–467.
  35. Köpf, A.; Rank, N.; Roininen, H.; Tahvanainen, J. (1997). "Defensive larval secretions of leaf beetles attract a specialist predator Parasyrphus nigritarsis". Ecological Entomology. 22 (2): 176–183. doi:10.1046/j.1365-2311.1997.t01-1-00061.x. S2CID 83877801.
  36. Ge, S. Q.; Li, W. Z.; Yang, X. K. (2005). "Two new species of Phratora Chevrolat from Qinling Mountains, China (Coleoptera: Chrysomelidae: Chrysomelinae)". Pan-Pacific Entomologist. 81 (1–2): 1–5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.