List of character tables for chemically important 3D point groups

This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well as more extensive lists of them, can be found in the references.[1][2][3][4][5]

Notation

For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Zn: cyclic group of order n, Dn: dihedral group isomorphic to the symmetry group of an nsided regular polygon, Sn: symmetric group on n letters, and An: alternating group on n letters.

The character tables then follow for all groups. The rows of the character tables correspond to the irreducible representations of the group, with their conventional names, known as Mulliken symbols,[6] in the left margin. The naming conventions are as follows:

  • A and B are singly degenerate representations, with the former transforming symmetrically around the principal axis of the group, and the latter asymmetrically. E, T, G, H, ... are doubly, triply, quadruply, quintuply, ... degenerate representations.
  • g and u subscripts denote symmetry and antisymmetry, respectively, with respect to a center of inversion. Subscripts "1" and "2" denote symmetry and antisymmetry, respectively, with respect to a nonprincipal rotation axis. Higher numbers denote additional representations with such asymmetry.
  • Single prime ( ' ) and double prime ( '' ) superscripts denote symmetry and antisymmetry, respectively, with respect to a horizontal mirror plane σh, one perpendicular to the principal rotation axis.

All but the two rightmost columns correspond to the symmetry operations which are invariant in the group. In the case of sets of similar operations with the same characters for all representations, they are presented as one column, with the number of such similar operations noted in the heading.

The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations. The symbol i used in the body of the table denotes the imaginary unit: i 2 = 1. Used in a column heading, it denotes the operation of inversion. A superscripted uppercase "C" denotes complex conjugation.

The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (Rx, Ry and Rz), and functions of the quadratic terms of the coordinates(x2, y2, z2, xy, xz, and yz).

A further column is included in some tables, such as those of Salthouse and Ware[7] For example,

, , , , , , , , , ,
, , , , , ,

The last column relates to cubic functions which may be used in applications regarding f orbitals in atoms.

Character tables

Nonaxial symmetries

These groups are characterized by a lack of a proper rotation axis, noting that a rotation is considered the identity operation. These groups have involutional symmetry: the only nonidentity operation, if any, is its own inverse.

In the group , all functions of the Cartesian coordinates and rotations about them transform as the irreducible representation.

Point GroupCanonical GroupOrderCharacter Table
2
, , , , , , ,
, ,
, , , , ,
, , ,

Cyclic symmetries

The families of groups with these symmetries have only one rotation axis.

Cyclic groups (Cn)

The cyclic groups are denoted by Cn. These groups are characterized by an n-fold proper rotation axis Cn. The C1 group is covered in the nonaxial groups section.

Point
Group
Canonical
Group
OrderCharacter Table
C2Z22
 EC2  
A11Rz, z x2, y2, z2, xy
B11Rx, Ry, x, y xz, yz
C3Z33
 EC3 C32 θ = ei /3
A111Rz, z x2 + y2
E1
1
θ 
θC
θC
θ 
(Rx, Ry),
(x, y)
(x2 - y2, xy),
(xz, yz)
C4Z44
 EC4  C2 C43  
A1111Rz, z x2 + y2, z2
B1111  x2 y2, xy
E1
1
i
i
1
1
i
i
(Rx, Ry),
(x, y)
(xz, yz)
C5Z55
 E   C5 C52 C53C54 θ = ei /5
A11111Rz, z x2 + y2, z2
E1 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
 (x2 - y2, xy)
C6Z66
 E   C6 C3  C2 C32 C65 θ = ei /6
A111111Rz, z x2 + y2, z2
B111111  
E1 1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
 (x2 y2, xy)
C8Z88
 E   C8 C4  C83C2  C85C43 C87 θ = ei /8
A11111111Rz, z x2 + y2, z2
B11111111  
E1 1
1
θ 
θC
i
i
θC
θ 
1
1
θ 
θC
i
i
θC
θ 
(Rx, Ry),
(x, y)
(xz, yz)
E2 1
1
i
i
1
1
i
i
1
1
i
i
1
1
i
i
 (x2 y2, xy)
E3 1
1
θ 
θC
i
i
θC
θ 
1
1
θ 
θC
i
i
θC
θ 
  

Reflection groups (Cnh)

The reflection groups are denoted by Cnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) a mirror plane σh normal to Cn. The C1h group is the same as the Cs group in the nonaxial groups section.

Point
Group
Canonical
group
OrderCharacter Table
C2hZ2 × Z24
 EC2  iσh  
Ag1111Rz x2, y2, z2, xy
Bg1111Rx, Ry xz, yz
Au1111z 
Bu1111x, y 
C3hZ66
 EC3  C32σh  S3 S35 θ = ei /3
A'111111Rz x2 + y2, z2
E'1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(x, y)(x2 y2, xy)
A''111111z 
E''1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(Rx, Ry)(xz, yz)
C4hZ2 × Z48
 EC4  C2 C43 iS43σh  S4  
Ag11111111 Rzx2 + y2, z2
Bg11111111  x2 y2, xy
Eg1
1
i
i
1
1
i
i
1
1
i
i
1
1
i
i
(Rx, Ry)(xz, yz)
Au11111111z 
Bu11111111  
Eu1
1
i
i
1
1
i
i
1
1
i
i
1
1
i
i
(x, y) 
C5hZ1010
 E   C5 C52 C53C54 σh S5  S57S53 S59 θ = ei /5
A'1111111111Rz x2 + y2, z2
E1' 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
(x, y) 
E2' 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
 (x2 - y2, xy)
A''11111 11111 z 
E1'' 1
1
θ 
θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
1
1
θ 
-θC
θ2
(θ2)C
(θ2)C
θ2
θC
θ 
(Rx, Ry)(xz, yz)
E2'' 1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
1
1
θ2
(θ2)C
θC
θ 
θ 
θC
(θ2)C
θ2
  
C6hZ2 × Z612
 E   C6 C3  C2 C32 C65iS35 S65σh  S6 S3  θ = ei /6
Ag111111111111 Rzx2 + y2, z2
Bg111111 111111   
E1g 1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(Rx, Ry)(xz, yz)
E2g 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
 (x2 y2, xy)
Au111111 111111 z 
Bu111111 111111   
E1u 1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
1
1
θ 
θC
θC
θ 
(x, y) 
E2u 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
  

Pyramidal groups (Cnv)

The pyramidal groups are denoted by Cnv. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n mirror planes σv which contain Cn. The C1v group is the same as the Cs group in the nonaxial groups section.

Point
Group
Canonical
group
OrderCharacter Table
C2vZ2 × Z2
(=D2)
4
 EC2  σv  σv'   
A11111z x2 , y2, z2
A21111Rzxy
B11111Ry, xxz
B21111Rx, yyz
C3vD36
 E2 C3  3 σv   
A1111z x2 + y2, z2
A2111Rz 
E210(Rx, Ry), (x, y) (x2 y2, xy), (xz, yz)
C4vD48
 E2 C4  C2 2 σv  2 σd  
A111111 zx2 + y2, z2
A211111Rz 
B111111  x2 y2
B211111 xy
E20200 (Rx, Ry), (x, y)(xz, yz)
C5vD510
 E   2 C5 2 C52 5 σv θ = 2π/5
A11111z x2 + y2, z2
A21111Rz 
E122 cos(θ)2 cos(2θ)0 (Rx, Ry), (x, y)(xz, yz)
E222 cos(2θ)2 cos(θ)0  (x2 y2, xy)
C6vD612
 E   2 C6 2 C3  C2 3 σv  3 σd  
A1111111 zx2 + y2, z2
A2111111Rz 
B1111111  
B2111111  
E1211200 (Rx, Ry), (x, y)(xz, yz)
E2211200  (x2 y2, xy)

Improper rotation groups (Sn)

The improper rotation groups are denoted by Sn. These groups are characterized by an n-fold improper rotation axis Sn, where n is necessarily even. The S2 group is the same as the Ci group in the nonaxial groups section. Sn groups with an odd value of n are identical to Cnh groups of same n and are therefore not considered here (in particular, S1 is identical to Cs).

The S8 table reflects the 2007 discovery of errors in older references.[4] Specifically, (Rx, Ry) transform not as E1 but rather as E3.

Point
Group
Canonical
group
OrderCharacter Table
S4Z44
 ES4  C2 S43  
A1111Rz,   x2 + y2, z2
B1111z x2 y2, xy
E1
1
i
i
1
1
i
i
(Rx, Ry),
(x, y)
(xz, yz)
S6Z66
 E   S6 C3  iC32S65 θ = ei /6
Ag111111Rz x2 + y2, z2
Eg 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
(Rx, Ry) (x2 y2, xy),
(xz, yz)
Au111111z 
Eu 1
1
θC
θ 
θ 
θC
1
1
θC
θ 
θ 
θC
(x, y) 
S8Z88
 E   S8 C4  S83i S85C42 S87 θ = ei /8
A11111111Rz x2 + y2, z2
B11111111z 
E1 1
1
θ 
θC
i
i
θC
θ 
1
1
θ 
θC
i
i
θC
θ 
(x, y)(xz, yz)
E2 1
1
i
i
1
1
i
i
1
1
i
i
1
1
i
i
 (x2 y2, xy)
E3 1
1
θC
θ 
i
i
θ 
θC
1
1
θC
θ 
i
i
θ
θC
(Rx, Ry)(xz, yz)

Dihedral symmetries

The families of groups with these symmetries are characterized by 2-fold proper rotation axes normal to a principal rotation axis.

Dihedral groups (Dn)

The dihedral groups are denoted by Dn. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn. The D1 group is the same as the C2 group in the cyclic groups section.

Point
Group
Canonical
group
OrderCharacter Table
D2Z2 × Z2
(=D2)
4
 EC2 (z) C2 (x) C2 (y) 
A1111  x2, y2, z2
B11111Rz, zxy
B21111Ry, yxz
B31111Rx, xyz
D3D36
 E2 C3  3 C'2  
A1111  x2 + y2, z2
A2111Rz, z 
E210(Rx, Ry), (x, y) (x2 y2, xy), (xz, yz)
D4D48
 E2 C4  C2 2 C2'  2 C2''   
A111111  x2 + y2, z2
A211111Rz, z 
B111111  x2 y2
B211111 xy
E20200 (Rx, Ry), (x, y)(xz, yz)
D5D510
 E   2 C5 2 C52 5 C2 θ=2π/5
A11111  x2 + y2, z2
A21111Rz, z 
E122 cos(θ)2 cos(2θ)0 (Rx, Ry), (x, y)(xz, yz)
E222 cos(2θ)2 cos(θ)0  (x2 y2, xy)
D6D612
 E   2 C6 2 C3  C2 3 C2'  3 C2''   
A1111111  x2 + y2, z2
A2111111 Rz, z 
B1111111  
B2111111  
E1211200 (Rx, Ry), (x, y)(xz, yz)
E2211200  (x2 y2, xy)

Prismatic groups (Dnh)

The prismatic groups are denoted by Dnh. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) a mirror plane σh normal to Cn and containing the C2s. The D1h group is the same as the C2v group in the pyramidal groups section.

The D8h table reflects the 2007 discovery of errors in older references.[4] Specifically, symmetry operation column headers 2S8 and 2S83 were reversed in the older references.

Point
Group
Canonical
group
OrderCharacter Table
D2h Z2×Z2×Z2
(=Z2×D2)
8
 EC2  C2 (x) C2 (y)i σ(xy)   σ(xz)   σ(yz)   
Ag11111111  x2, y2, z2
B1g11111111 Rzxy
B2g11111111 Ryxz
B3g11111111 Rxyz
Au1111 1111  
B1u1111 1111z 
B2u1111 1111y 
B3u1111 1111x 
D3hD612
 E2 C3  3 C2 σh  2 S3 3 σv   
A1'111111  x2 + y2, z2
A2'111111Rz 
E'210210(x, y) (x2 y2, xy)
A1''111111   
A2''111111 z 
E''210210 (Rx, Ry)(xz, yz)
D4hZ2×D416
 E2 C4  C2 2 C2'  2 C2'' i 2 S4 σh  2 σv  2 σd  
A1g1111111111  x2 + y2, z2
A2g11111 11111 Rz 
B1g11111 11111  x2 y2
B2g11111 11111  xy
Eg2020020200 (Rx, Ry)(xz, yz)
A1u11111 11111   
A2u11111 11111 z 
B1u11111 11111   
B2u11111 11111   
Eu2020020200 (x, y) 
D5hD1020
 E   2 C5 2 C52 5 C2  σh 2 S5  2 S535 σv  θ=2π/5
A1'11111111  x2 + y2, z2
A2'11111111 Rz 
E1'22 cos(θ)2 cos(2θ)02 2 cos(θ)2 cos(2θ)0(x, y) 
E2'22 cos(2θ)2 cos(θ)02 2 cos(2θ)2 cos(θ)0  (x2 y2, xy)
A1''1111 1111   
A2''1111 1111 z 
E1''22 cos(θ) 2 cos(2θ)022 cos(θ) 2 cos(2θ)0 (Rx, Ry)(xz, yz)
E2''22 cos(2θ) 2 cos(θ)022 cos(2θ) 2 cos(θ)0  
D6h Z2×D624
 E   2 C6 2 C3  C2 3 C2'  3 C2'' i 2 S3 2 S6  σh 3 σd  3 σv  
A1g111111111111  x2 + y2, z2
A2g111111 111111 Rz 
B1g111111 111111   
B2g111111 111111   
E1g211200 211200 (Rx, Ry)(xz, yz)
E2g211200 211200  (x2 y2, xy)
A1u111111 111111   
A2u111111 111111 z 
B1u111111 111111   
B2u111111 111111   
E1u211200 211200 (x, y) 
E2u211200 211200   
D8hZ2×D832
 E   2 C8 2 C83 2 C4 C2  4 C2'  4 C2'' i 2 S832 S8  2 S4  σh  4 σd  4 σv  θ=21/2
A1g1111111 1111111  x2 + y2, z2
A2g1111111 1111111Rz 
B1g1111111 1111111  
B2g1111111 1111111  
E1g2θθ0200 2θθ0200 (Rx, Ry)(xz, yz)
E2g2002200 2002200  (x2 y2, xy)
E3g2θθ0200 2θθ0200   
A1u1111111 1111111  
A2u1111111 1111111z 
B1u1111111 1111111  
B2u1111111 1111111   
E1u2θθ0200 2θθ0200 (x, y) 
E2u2002200 2002200  
E3u2θθ0200 2θθ0200   

Antiprismatic groups (Dnd)

The antiprismatic groups are denoted by Dnd. These groups are characterized by i) an n-fold proper rotation axis Cn; ii) n 2-fold proper rotation axes C2 normal to Cn; iii) n mirror planes σd which contain Cn. The D1d group is the same as the C2h group in the reflection groups section.

Point
Group
Canonical
group
OrderCharacter Table
D2dD48
 E 2 S4  C2 2 C2'  2 σd  
A111111  x2, y2, z2
A211111Rz 
B111111  x2 y2
B211111zxy
E20200 (Rx, Ry), (x, y)(xz, yz)
D3dD612
 E 2 C3  3 C2 i  2 S6  3 σd   
A1g111111  x2 + y2, z2
A2g111111 Rz 
Eg210210 (Rx, Ry) (x2 y2, xy), (xz, yz)
A1u111111  
A2u111111z 
Eu210210(x, y) 
D4dD816
 E 2 S8  2 C4 2 S83 C2 4 C2'  4 σd  θ=21/2
A11111111  x2 + y2, z2
A21111111 Rz 
B11111111  
B21111111z 
E12θ0θ200 (x, y) 
E22020200  (x2 y2, xy)
E32θ0θ200 (Rx, Ry)(xz, yz)
D5dD1020
 E   2 C5 2 C52 5 C2 i  2 S10 2 S103 5 σd  θ=2π/5
A1g11111111  x2 + y2, z2
A2g11111111 Rz 
E1g22 cos(θ)2 cos(2θ)0 22 cos(2θ)2 cos(θ)0 (Rx, Ry)(xz, yz)
E2g22 cos(2θ)2 cos(θ)0 22 cos(θ)2 cos(2θ)0  (x2 y2, xy)
A1u1111 1111  
A2u1111 1111z 
E1u22 cos(θ)2 cos(2θ)0 22 cos(2θ)2 cos(θ)0 (x, y) 
E2u22 cos(2θ)2 cos(θ)0 22 cos(θ)2 cos(2θ)0   
D6dD1224
 E   2 S12 2 C6  2 S4 2 C3  2 S125C2  6 C2' 6 σd  θ=31/2
A1111111111  x2 + y2, z2
A2111111111 Rz 
B1111111111   
B2111111111 z 
E12θ101 θ200(x, y) 
E2211211200  (x2 y2, xy)
E3202020200   
E4211211200   
E52θ101 θ200 (Rx, Ry)(xz, yz)

Polyhedral symmetries

These symmetries are characterized by having more than one proper rotation axis of order greater than 2.

Cubic groups

These polyhedral groups are characterized by not having a C5 proper rotation axis.

Point
Group
Canonical
group
OrderCharacter Table
TA412
 E4 C3  4 C32 3 C2  θ=ei/3
A1111  x2 + y2 + z2
E1
1
θ 
θC
θC
θ 
1
1
  (2 z2 x2 y2,
x2 y2)
T3001 (Rx, Ry, Rz),
(x, y, z)
(xy, xz, yz)
TdS424
 E8 C3  3 C2 6 S4  6 σd   
A111111  x2 + y2 + z2
A211111  
E21200  (2 z2 x2 y2,
x2 y2)
T130111 (Rx, Ry, Rz) 
T230111 (x, y, z)(xy, xz, yz)
ThZ2×A424
 E4 C3  4 C32 3 C2 i 4 S6 4 S65 3 σh  θ=ei/3
Ag11111111  x2 + y2 + z2
Au11111111   
Eg1
1
θ 
θC
θC
θ 
1
1
1
1
θ 
θC
θC
θ 
1
1
  (2 z2 x2 y2,
x2 y2)
Eu1
1
θ 
θC
θC
θ 
1
1
1
1
θ 
θC
θC
θ 
1
1
  
Tg30013001 (Rx, Ry, Rz) (xy, xz, yz)
Tu30013001 (x, y, z) 
OS424
 E   6 C4  3 C2  (C42) 8 C3 6 C'2   
A111111  x2 + y2 + z2
A211111  
E20210  (2 z2 x2 y2,
x2 y2)
T131101 (Rx, Ry, Rz),
(x, y, z)
 
T231101  (xy, xz, yz)
Oh Z2×S448
 E   8 C3 6 C2  6 C4  3 C2  (C42) i6 S4  8 S6 3 σh  6 σd   
A1g1111111111  x2 + y2 + z2
A2g1111111111   
Eg2100220120   (2 z2 x2 y2,
x2 y2)
T1g3011131011 (Rx, Ry, Rz)  
T2g3011131011  (xy, xz, yz)
A1u11111 11111   
A2u11111 11111   
Eu2100220120   
T1u30111 31011 (x, y, z) 
T2u30111 31011   

Icosahedral groups

These polyhedral groups are characterized by having a C5 proper rotation axis.

Point
Group
Canonical
group
OrderCharacter Table
IA560
 E12 C5  12 C52 20 C3  15 C2  θ=π/5
A11111  x2 + y2 + z2
T132 cos(θ)2 cos(3θ)01 (Rx, Ry, Rz),
(x, y, z)
 
T232 cos(3θ)2 cos(θ)01   
G41110  
H50011  (2 z2 x2 y2,
x2 y2,
xy, xz, yz)
IhZ2×A5120
 E12 C5  12 C52 20 C3  15 C2 i 12 S10  12 S103 20 S6  15 σ θ=π/5
Ag1111111111  x2 + y2 + z2
T1g32 cos(θ)2 cos(3θ)01 32 cos(3θ)2 cos(θ)01 (Rx, Ry, Rz) 
T2g32 cos(3θ)2 cos(θ)01 32 cos(θ)2 cos(3θ)01  
Gg4111041110   
Hg5001150011  (2 z2 x2 y2,
x2 y2,
xy, xz, yz)
Au11111 11111   
T1u32 cos(θ)2 cos(3θ)01 32 cos(3θ)2 cos(θ)01 (x, y, z) 
T2u32 cos(3θ)2 cos(θ)01 32 cos(θ)2 cos(3θ)01   
Gu41110 41110   
Hu5001150011   

Linear (cylindrical) groups

These groups are characterized by having a proper rotation axis C around which the symmetry is invariant to any rotation.

Point
Group
Character Table
C∞v
 E2 CΦ ... ∞ σv   
A1+11...1z x2 + y2, z2
A211...1Rz  
E122 cos(Φ)...0 (x, y), (Rx, Ry)(xz, yz)
E222 cos(2Φ)...0  (x2 - y2, xy)
E322 cos(3Φ)...0   
...............  
D∞h
 E2 CΦ... ∞ σv i 2 SΦ...C2   
Σg+11...111...1  x2 + y2, z2
Σg11... 111...1 Rz 
Πg22 cos(Φ)...022 cos(Φ)..0 (Rx, Ry)(xz, yz)
Δg22 cos(2Φ)...022 cos(2Φ)..0  (x2 y2, xy)
...........................  
Σu+11... 111...1 z 
Σu11... 111...1   
Πu22 cos(Φ)... 022 cos(Φ)..0 (x, y) 
Δu22 cos(2Φ)... 022 cos(2Φ)..0   
...........................  

See also

Notes

  1. Drago, Russell S. (1977). Physical Methods in Chemistry. W.B. Saunders Company. ISBN 0-7216-3184-3.
  2. Cotton, F. Albert (1990). Chemical Applications of Group Theory. John Wiley & Sons: New York. ISBN 0-471-51094-7.
  3. Gelessus, Achim (2007-07-12). "Character tables for chemically important point groups". Jacobs University, Bremin; Computational Laboratory for Analysis, Modeling, and Visualization. Retrieved 2007-07-12.
  4. Shirts, Randall B. (2007). "Correcting Two Long-Standing Errors in Point Group Symmetry Character Tables". Journal of Chemical Education. American Chemical Society. 84 (1882): 1882. Bibcode:2007JChEd..84.1882S. doi:10.1021/ed084p1882. Retrieved 2007-10-16.
  5. Vanovschi, Vitalii. "POINT GROUP SYMMETRY CHARACTER TABLES". WebQC.Org. Retrieved 2008-10-29.
  6. Mulliken, Robert S. (1933-02-15). "Electronic Structures of Polyatomic Molecules and Valence. IV. Electronic States, Quantum Theory of the Double Bond". Physical Review. American Physical Society (APS). 43 (4): 279–302. Bibcode:1933PhRv...43..279M. doi:10.1103/physrev.43.279. ISSN 0031-899X.
  7. Salthouse, J.A.; Ware, M.J. (1972). Point group character tables and related data. Cambridge: Cambridge University Press. pp. 88 + v. ISBN 0-521-08139-4.

Further reading

  • Bunker, Philip; Jensen, Per (2006). Molecular Symmetry and Spectroscopy, Second edition. Ottawa: NRC Research Press. ISBN 0-660-19628-X.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.