Polygonalization

In computational geometry, a polygonalization of a finite set of points in the Euclidean plane is a simple polygon with the given points as its vertices.[1] A polygonalization may also be called a polygonization,[2] simple polygonalization,[3] Hamiltonian polygon,[4] non-crossing Hamiltonian cycle,[5] or crossing-free straight-edge spanning cycle.[6]

16 polygonalizations of a set of six points

Every point set that does not lie on a single line has at least one polygonalization, which can be found in polynomial time. For points in convex position, there is only one, but for some other point sets there can be exponentially many. Finding an optimal polygonalization under several natural optimization criteria is a hard problem, including as a special case the travelling salesman problem. The complexity of counting all polygonalizations remains unknown.

Definition

A polygonalization is a simple polygon having a given set of points in the Euclidean plane as its set of vertices. A polygon may be described by a cyclic order on its vertices, which are connected in consecutive pairs by line segments, the edges of the polygon. A polygon, defined in this way, is "simple" if the only intersection points of these line segments are at shared endpoints.[2]

Some authors only consider polygonalizations for points that are in general position, meaning that no three are on a line.[7] With this assumption, the angle between two consecutive segments of the polygon cannot be 180°. However, when point sets with collinearities are considered, it is generally allowed for their polygonalizations to have 180° angles at some points. When this happens, these points are still considered to be vertices, rather than being interior to edges.[8]

Existence

Polygonalizations of a 3 × 3 grid. The 180° angles visible in each polygon are necessary: for a grid of this size, all polygonalizations have a 180° angle.[9]

Steinhaus (1964) observed that every finite point set with no three in a line forms the vertices of a simple polygon.[10] However, requiring no three to be in a line is unnecessarily strong. Instead, all that is required for the existence of a polygonalization (allowing 180° angles) is that the points do not all lie on one line. If they do not, then they have a polygonalization that can be constructed in polynomial time. One way of constructing a polygonalization is to choose any point in the convex hull of (not necessarily one of the given points). Then radially ordering the points around (breaking ties by distance from q) produces the cyclic ordering of a star-shaped polygon through all the given points, with in its kernel.[7] The same idea of sorting points radially around a central point is used in some versions of the Graham scan convex hull algorithm, and can be performed in time.[11] Polygonalizations that avoid 180° angles do not always exist. For instance, for 3 × 3 and 5 × 5 square grids, all polygonalizations use 180° angles.[9]

As well as star-shaped polygonalizations, every non-collinear set of points has a polygonalization that is a monotone polygon. This means that, with respect to some straight line (which may be taken as the -axis) every perpendicular line to the reference line intersects the polygon in a single interval, or not at all. A construction of Grünbaum (1994) begins by sorting the points by their -coordinates, and drawing a line through the two extreme points. Because the points are not all in a line, at least one of the two open halfplanes bounded by this line must be non-empty. Grünbaum forms two monotone polygonal chains connecting the extreme points through sorted subsequences of the points: one for the points in this non-empty open halfplane, and the other for the remaining points. Their union is the desired monotone polygon. After the sorting step, the rest of the construction may be performed in linear time.[4]

It is NP-complete to determine whether a set of points has a polygonalization using only axis-parallel edges.[12] However, polygonalizations with the additional constraint that they make a right turn at every vertex, if they exist, are uniquely determined. Each axis-parallel line through a point must pass through an even number of points, and this polygonalization must connect alternating pairs of points on this line. The polygonalization may be found in time by grouping the points by equal coordinates and sorting each group by the other coordinate.[13] For any point set, at most one rotation can have a polygonalization of this form, and this rotation can again be found in polynomial time.[14]

Optimization

Unsolved problem in mathematics:

What is the computational complexity of the longest polygonalization?

Problems of finding an optimal polygonalization (for various criteria of optimality) are often computationally infeasible. For instance, the solution to the travelling salesman problem, for the given points, does not have any crossings. Therefore, it is always a polygonalization, the polygonalization with the minimum perimeter.[15] It is NP-hard to find. Similarly, finding the simple polygonalization with minimum or maximum area is known to be NP-hard,[3] and has been the subject of some computational efforts.[16][17] The maximum area is always more than half of the area of the convex hull, giving an approximation ratio of 2.[18] The exact complexity of the simple polygonalization with maximum perimeter, and the existence of a constant approximation ratio for this problem, remain unknown.[5] The polygonalization that minimizes the length of its longest edge is also NP-hard to find, and hard to approximate to an approximation ratio better than ; no constant-factor approximation is known.[19]

A non-optimal solution to the travelling salesman problem may have crossings, but it is possible to eliminate all crossings by local optimization steps that reduce the total length. Using steps that also eliminate crossings at each step, this can be done in polynomial time,[20] but without this restriction there exist local optimization sequences that instead use an exponential number of steps.[21]

The shortest bitonic tour (the minimum-perimeter monotone polygon through the given points) is always a polygonalization, and can be found in polynomial time.[22]

Counting

Unsolved problem in mathematics:

What is the computational complexity of counting polygonalizations?

The problem of counting all polygonalizations of a given point set belongs to #P, the class of counting problems associated with decision problems in NP. However, it is unknown whether it is #P-complete or, if not, what its computational complexity might be.[23][24] A set of points has exactly one polygonalization if and only if it is in convex position.[1] There exist sets of points for which the number of polygonalizations is as large as ,[25] and every set of points has at most polygonalizations.[6]

Methods applying the planar separator theorem to labeled triangulations of the points can be used to count all polygonalizations of a set of points in subexponential time, .[26] Dynamic programming can be used to count all monotone polygonalizations in polynomial time, and the results of this computation can then be used to generate a random monotone polygonalization.[27]

Generation

Unsolved problem in mathematics:

Can local moves connect the state space of polygonalizations for every point set?

A polygon that cannot be changed into any other polygon through the same points by flips or VE-flips[28]

It is unknown whether it is possible for the system of all polygonalizations to form a connected state space under local moves that change a bounded number of the edges of the polygonalizations. If this were possible, it could be used as part of an algorithm for generating all polygonalizations, by applying a graph traversal to the state space. For this problem, it is insufficient to consider flips that remove two edges of a polygonalization and replace them by two other edges, or VE-flips that remove three edges, two of which share a vertex, and replace them by three other edges. There exist polygonalizations for which no flip or VE-flip is possible, even though the same point set has other polygonalizations.[28]

The polygonal wraps, weakly simple polygons that use each given point one or more times as a vertex, include all polygonalizations and are connected by local moves.[2] Another more general class of polygons, the surrounding polygons, are simple polygons that have some of the given points as vertices and enclose all of the points. They are again locally connected, and can be listed in polynomial time per polygon. The algorithm constructs a tree of polygons, with the convex hull as its root and with the parent of each other surrounding polygon obtained by removing one vertex (proven to be possible by applying the two ears theorem to the exterior of the polygon). It then applies a reverse-search algorithm to this tree to list the polygons. As a consequence of this method, all polygonalizations can be listed in exponential time ( for points) and polynomial space.[29]

Applications

Classical connect the dots puzzles involve connecting points in sequence to form some unexpected shape, often without crossings.[30] The travelling salesman problem and its variants have many applications.[31] Polygonalization also has applications in the reconstruction of contour lines from scattered data points, and in boundary tracing in image analysis.[32]

See also

References

  1. Arkin, Esther M.; Fekete, Sándor P.; Hurtado, Ferran; Mitchell, Joseph S. B.; Noy, Marc; Sacristán, Vera; Sethia, Saurabh (2003), "On the reflexivity of point sets", in Aronov, Boris; Basu, Saugata; Pach, János; Sharir, Micha (eds.), Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Algorithms and Combinatorics, vol. 25, Berlin: Springer, pp. 139–156, doi:10.1007/978-3-642-55566-4_6, MR 2038472
  2. Damian, Mirela; Flatland, Robin; O'Rourke, Joseph; Ramaswami, Suneeta (2010), "Connecting polygonizations via stretches and twangs", Theory of Computing Systems, 47 (3): 674–695, doi:10.1007/s00224-009-9192-8, MR 2652036, S2CID 59602
  3. Fekete, S. P. (2000), "On simple polygonalizations with optimal area", Discrete & Computational Geometry, 23 (1): 73–110, doi:10.1007/PL00009492, MR 1727124, S2CID 15835121
  4. Grünbaum, Branko (1994), "Hamiltonian polygons and polyhedra" (PDF), Geombinatorics, 3 (3): 83–89, MR 1326479
  5. Dumitrescu, Adrian; Tóth, Csaba D. (2010), "Long non-crossing configurations in the plane", Discrete & Computational Geometry, 44 (4): 727–752, doi:10.1007/s00454-010-9277-9, MR 2728029, S2CID 2813190
  6. Sharir, Micha; Sheffer, Adam; Welzl, Emo (2013), "Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn's technique", Journal of Combinatorial Theory, Series A, 120 (4): 777–794, doi:10.1016/j.jcta.2013.01.002, MR 3022612
  7. Deneen, Linda; Shute, Gary (1988), "Polygonizations of point sets in the plane", Discrete & Computational Geometry, 3 (1): 77–87, doi:10.1007/BF02187898, MR 0918181
  8. Malkevitch, Joseph (2016), "Are Precise Definitions a Good Idea?", AMS Feature Column, American Mathematical Society
  9. Chow, Sam; Gafni, Ayla; Gafni, Paul (March 2021), "Connecting the dots: maximal polygons on a square grid", Mathematics Magazine, 94 (2): 118–124, doi:10.1080/0025570x.2021.1869493, MR 4241975, S2CID 233185771
  10. Steinhaus, Hugo (1964), One Hundred Problems in Elementary Mathematics, Basic Books, pp. 17, 85–86, ISBN 9780486811802
  11. Graham, R. L. (June 1972), "An efficient algorithm for determining the convex hull of a finite planar set" (PDF), Information Processing Letters, 1 (4): 132–133, doi:10.1016/0020-0190(72)90045-2
  12. Rappaport, David (1986), On the complexity of computing orthogonal polygons from a set of points, Technical Report, vol. SOCS-86.9, Montreal: McGill University
  13. O'Rourke, Joseph (1988), "Uniqueness of orthogonal connect-the-dots", in Toussaint, Godfried T. (ed.), Computational Morphology: A Computational Geometric Approach to the Analysis of Form, Machine Intelligence and Pattern Recognition, vol. 6, Amsterdam: North-Holland, pp. 97–104, doi:10.1016/B978-0-444-70467-2.50013-8, MR 0994001
  14. Löffler, Maarten; Mumford, Elena (2011), "Connected rectilinear graphs on point sets", Journal of Computational Geometry, 2 (1): 1–15, doi:10.20382/v2i1a1, MR 2786032
  15. Quintas, L. V.; Supnick, Fred (1965), "On some properties of shortest Hamiltonian circuits", The American Mathematical Monthly, 72 (9): 977–980, doi:10.2307/2313333, JSTOR 2313333, MR 0188872
  16. Demaine, Erik D.; Fekete, Sándor P.; Keldenich, Phillip; Krupke, Dominik; Mitchell, Joseph S. B. (2022), "Area-optimal simple polygonalizations: the CG challenge 2019", ACM Journal of Experimental Algorithmics, 27: Art. 2.4, 12, doi:10.1145/3504000, MR 4390039, S2CID 244117500
  17. Ramos, Natanael; de Rezende, Pedro J.; de Souza, Cid C. (2022), "Optimal area polygonization problems: exact solutions through geometric duality", Computers & Operations Research, 145, Paper No. 105842, doi:10.1016/j.cor.2022.105842, MR 4418151, S2CID 248369389
  18. Fekete, Sándor P. (1992), Geometry and the Travelling Salesman Problem (Doctoral dissertation), University of Waterloo, ProQuest 304035266 For a polygonalization of area more than half the convex hull, see Theorem 4.2.1, page 56.
  19. Fekete, Sándor P.; Keldenich, Phillip (2018), "Computing crossing-free configurations with minimum bottleneck" (PDF), 34th European Workshop on Computational Geometry, Free University of Berlin, pp. 23:1–23:6
  20. van Leeuwen, Jan; Schoone, Anneke A. (1981), "Untangling a travelling salesman tour in the plane" (PDF), in Mühlbacher, Jörg R. (ed.), Proceedings of the 7th Conference Graphtheoretic Concepts in Computer Science (WG '81), Linz, Austria, June 15-17, 1981, Hanser, Munich, pp. 87–98, MR 0708744
  21. Englert, Matthias; Röglin, Heiko; Vöcking, Berthold (2014), "Worst case and probabilistic analysis of the 2-opt algorithm for the TSP", Algorithmica, 68 (1): 190–264, doi:10.1007/s00453-013-9801-4, MR 3147481, S2CID 1638275
  22. de Berg, Mark; Buchin, Kevin; Jansen, Bart M. P.; Woeginger, Gerhard (2016), "Fine-Grained Complexity Analysis of Two Classic TSP Variants", in Chatzigiannakis, Ioannis; Mitzenmacher, Michael; Rabani, Yuval; Sangiorgi, Davide (eds.), 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 5:1–5:14, doi:10.4230/LIPIcs.ICALP.2016.5, ISBN 978-3-95977-013-2
  23. Mitchell, Joseph S. B.; O'Rourke, Joseph (2001), "Computational geometry column 42", International Journal of Computational Geometry and Applications, 11 (5): 573–582, arXiv:cs/0108021, doi:10.1142/S0218195901000651, MR 1862888
  24. O'Rourke, Joseph (January 1, 2003), "Problem 16: Simple Polygonalizations", The Open Problems Project
  25. García, Alfredo; Noy, Marc; Tejel, Javier (2000), "Lower bounds on the number of crossing-free subgraphs of ", Computational Geometry: Theory & Applications, 16 (4): 211–221, doi:10.1016/S0925-7721(00)00010-9, MR 1775294
  26. Marx, Dániel; Miltzow, Tillmann (2016), "Peeling and nibbling the cactus: subexponential-time algorithms for counting triangulations and related problems", in Fekete, Sándor P.; Lubiw, Anna (eds.), 32nd International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, LIPIcs, vol. 51, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 52:1–52:16, arXiv:1603.07340, doi:10.4230/LIPIcs.SoCG.2016.52, ISBN 9783959770095, MR 3540894, S2CID 7668194
  27. Zhu, Chong; Sundaram, Gopalakrishnan; Snoeyink, Jack; Mitchell, Joseph S. B. (1996), "Generating random polygons with given vertices", Computational Geometry: Theory & Applications, 6 (5): 277–290, doi:10.1016/0925-7721(95)00031-3, MR 1408922
  28. Hernando, Carmen; Houle, Michael E.; Hurtado, Ferran (2002), "On local transformation of polygons with visibility properties", Theoretical Computer Science, 289 (2): 919–937, doi:10.1016/S0304-3975(01)00409-1, MR 1945256
  29. Yamanaka, Katsuhisa; Avis, David; Horiyama, Takashi; Okamoto, Yoshio; Uehara, Ryuhei; Yamauchi, Tanami (2021), "Algorithmic enumeration of surrounding polygons" (PDF), Discrete Applied Mathematics, 303: 305–313, doi:10.1016/j.dam.2020.03.034, MR 4310502
  30. Löffler, Maarten; Kaiser, Mira; van Kapel, Tim; Klappe, Gerwin; van Kreveld, Marc J.; Staals, Frank (2014), "The Connect-The-Dots family of puzzles: design and automatic generation", ACM Transactions on Graphics, 33 (4): 72:1–72:10, doi:10.1145/2601097.2601224, S2CID 9774101
  31. Cook, William J. (2012), "Chapter 3: The salesman in action", In pursuit of the traveling salesman, Princeton University Press, Princeton, NJ, pp. 44–61, ISBN 978-0-691-15270-7, MR 2866515
  32. Stelldinger, Peer (2010), "Connect the dots: the reconstruction of region boundaries from contour sampling points", in Köthe, Ullrich; Montanvert, Annick; Soille, Pierre (eds.), Applications of Discrete Geometry and Mathematical Morphology - First International Workshop, WADGMM 2010, Istanbul, Turkey, August 22, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 7346, Springer, pp. 1–13, doi:10.1007/978-3-642-32313-3_1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.