Polyunsaturated fat

In biochemistry and nutrition, a polyunsaturated fat is a fat that contains a polyunsaturated fatty acid (abbreviated PUFA), which is a subclass of fatty acid characterized by a backbone with two or more carbon–carbon double bonds.[1][2] Some polyunsaturated fatty acids are essentials. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats, which include drying oils.[3]

Chemical structure of the polyunsaturated fatty acid linoleic acid.
3D representation of linoleic acid in a bent conformation.
Chemical structure of α-linolenic acid (ALA), an essential omega−3 fatty acid.

Nomenclature

The position of the carbon-carbon double bonds in carboxylic acid chains in fats is designated by Greek letters.[1] The carbon atom closest to the carboxyl group is the alpha carbon, the next carbon is the beta carbon and so on. In fatty acids the carbon atom of the methyl group at the end of the hydrocarbon chain is called the omega carbon because omega is the last letter of the Greek alphabet. Omega-3 fatty acids have a double bond three carbons away from the methyl carbon, whereas omega-6 fatty acids have a double bond six carbons away from the methyl carbon. The illustration below shows the omega-6 fatty acid, linoleic acid.

Polyunsaturated fatty acids can be classified in various groups by their chemical structure:

Based on the length of their carbon backbone, they are sometimes classified in two groups:[4]

  • short chain polyunsaturated fatty acids (SC-PUFA), with 18 carbon atoms
  • long-chain polyunsaturated fatty acids (LC-PUFA) with 20 or more carbon atoms

Production

PUFAs with 18 carbon atoms, which are the most common variety, are not produced by mammals. Since they have important dietary functions, their biosynthesis has received much attention. Plants produce PUFAs from oleic acid. Key enzymes are called fatty acid desaturases, which introduce additional double bonds. Desaturases convert oleic acid into linolenic acid the precursor to alpha-linoenic acid, gamma-linolenic acid, and eicosatrienoic acid.[5]

Industrial PUFAs are generally obtained by hydrolysis of fats that contain PUFAs. The process is complicated by the sensitive nature of PUFAs, leading to side reactions and colorization. Thus, steam hydrolysis often fails for this reason. Alkaline hydrolysis of fats followed by acidification is expensive. Lipases, a family of enzymes, show potential as mild and green catalysts for the production of PUFAs from triglycerides.[3]

In general, PUFAs are undesirable components of vegetable oils, so there is great interest in their removal from, say, olive oil. One technology for lowering the PUFA contact is by selective formation of derivatives with ureas.[3]

Reactions

From the perspective of analysis, PUFA's have high iodine numbers.

PUFAs are highly reactive compared to monounsaturated or saturated analogues. One practical consequence is that polyunsaturated fatty acids have poor shelf life, owing to their tendency toward autoxidation. Metals accelerate the degradation.

Hydrogenation of PUFAs gives less saturated derivatives. For unsaturated products from partial hydrogenation often contain some trans isomers. The trans monounsaturated C20 species elaidic acid can be prepared in this way.[3]

Thermal degradation

Polyunsaturated fatty acids in culinary oils undergo oxidative deterioration at temperatures of 150 °C (302 °F). The heating causes a free radical chain reaction, which oxidizes the PUFAs into hydroperoxide, which further decomposes into a complex mixture of secondary products.[6]

Types

Methylene-interrupted polyenes

These fatty acids have 2 or more cis double bonds that are separated from each other by a single methylene bridge (-CH
2
-). This form is also sometimes called a divinylmethane pattern.[7]

Methylene- interrupted double bonds
−C−C=C−C−C=C−

The essential fatty acids are all omega-3 and -6 methylene-interrupted fatty acids. See more at Essential fatty acidsNomenclature[8]

Omega-3

Common name Lipid name Chemical name
Omega-3 fatty acids, polyunsaturated
Hexadecatrienoic acid (HTA) 16:3 (n-3) all-cis 7,10,13-hexadecatrienoic acid
Alpha-linolenic acid (ALA) 18:3 (n-3) all-cis-9,12,15-octadecatrienoic acid
Stearidonic acid (SDA) 18:4 (n-3) all-cis-6,9,12,15,-octadecatetraenoic acid
Eicosatrienoic acid (ETE) 20:3 (n-3) all-cis-11,14,17-eicosatrienoic acid
Eicosatetraenoic acid (ETA) 20:4 (n-3) all-cis-8,11,14,17-eicosatetraenoic acid
Eicosapentaenoic acid (EPA, Timnodonic acid) 20:5 (n-3) all-cis-5,8,11,14,17-eicosapentaenoic acid
Heneicosapentaenoic acid (HPA) 21:5 (n-3) all-cis-6,9,12,15,18-heneicosapentaenoic acid
Docosapentaenoic acid (DPA, Clupanodonic acid) 22:5 (n-3) all-cis-7,10,13,16,19-docosapentaenoic acid
Docosahexaenoic acid (DHA, Cervonic acid) 22:6 (n-3) all-cis-4,7,10,13,16,19-docosahexaenoic acid
Tetracosapentaenoic acid 24:5 (n-3) all-cis-9,12,15,18,21-tetracosapentaenoic acid
Tetracosahexaenoic acid (Nisinic acid) 24:6 (n-3) all-cis-6,9,12,15,18,21-tetracosahexaenoic acid

Omega-6

Common name Lipid name Chemical name
Omega-6 fatty acids, polyunsaturated
Linoleic acid (LA) 18:2 (n-6) all-cis-9,12-octadecadienoic acid
Gamma-linolenic acid (GLA) 18:3 (n-6) all-cis-6,9,12-octadecatrienoic acid
Eicosadienoic acid 20:2 (n-6) all-cis-11,14-eicosadienoic acid
Dihomo-gamma-linolenic acid (DGLA) 20:3 (n-6) all-cis-8,11,14-eicosatrienoic acid
Arachidonic acid (AA) 20:4 (n-6) all-cis-5,8,11,14-eicosatetraenoic acid
Docosadienoic acid 22:2 (n-6) all-cis-13,16-docosadienoic acid
Adrenic acid (AdA) 22:4 (n-6) all-cis-7,10,13,16-docosatetraenoic acid
Docosapentaenoic acid (DPA) 22:5 (n-6) all-cis-4,7,10,13,16-docosapentaenoic acid
Tetracosatetraenoic acid 24:4 (n-6) all-cis-9,12,15,18-tetracosatetraenoic acid
Tetracosapentaenoic acid 24:5 (n-6) all-cis-6,9,12,15,18-tetracosapentaenoic acid

Conjugated fatty acids

Conjugated double bonds
-C=C-C=C-
Common name Lipid name Chemical name
Conjugated fatty acids  have two or more conjugated double bonds
Conjugated Linoleic Acids (two conjugated double bonds)
Rumenic acid 18:2 (n-7) 9Z,11E-octadeca-9,11-dienoic acid
  18:2 (n-6) 10E,12Z-octadeca-10,12-dienoic acid
Conjugated Linolenic Acids (three conjugated double bonds)
α-Calendic acid 18:3 (n-6) 8E,10E,12Z-octadecatrienoic acid
β-Calendic acid 18:3 (n-6) 8E,10E,12E-octadecatrienoic acid
Jacaric acid 18:3 (n-6) 8Z,10E,12Z-octadecatrienoic acid
α-Eleostearic acid 18:3 (n-5) 9Z,11E,13E-octadeca-9,11,13-trienoic acid
β-Eleostearic acid 18:3 (n-5) 9E,11E,13E-octadeca-9,11,13-trienoic acid
Catalpic acid 18:3 (n-5) 9Z,11Z,13E-octadeca-9,11,13-trienoic acid
Punicic acid 18:3 (n-5) 9Z,11E,13Z-octadeca-9,11,13-trienoic acid
Other
Rumelenic acid 18:3 (n-3) 9E,11Z,15E-octadeca-9,11,15-trienoic acid
α-Parinaric acid 18:4 (n-3) 9E,11Z,13Z,15E-octadeca-9,11,13,15-tetraenoic acid
β-Parinaric acid 18:4 (n-3) all trans-octadeca-9,11,13,15-tetraenoic acid
Bosseopentaenoic acid 20:5 (n-6) 5Z,8Z,10E,12E,14Z-eicosapentaenoic acid

Other polyunsaturated fatty acids

Common name Lipid name Chemical name
Pinolenic acid 18:3 (n-6) (5Z,9Z,12Z)-octadeca-5,9,12-trienoic acid
Sciadonic acid 20:3 (n-6) (5Z,11Z,14Z)-eicosa-5,11,14-trienoic acid

Function and effects

The biological effects of the ω-3 and ω-6 fatty acids are largely mediated by their mutual interactions, see Essential fatty acid interactions for detail.

Health

Potential benefits

Because of their effects in the diet, unsaturated fats (monounsaturated and polyunsaturated) are often referred to as good fats; while saturated fats are sometimes referred to as bad fats. Some fat is needed in the diet, but it is usually considered that fats should not be consumed excessively, unsaturated fats should be preferred, and saturated fats in particular should be limited.[9][10][11][12]

In preliminary research, omega-3 fatty acids in algal oil, fish oil, fish and seafood have been shown to lower the risk of heart attacks.[13] Other preliminary research indicates that omega-6 fatty acids in sunflower oil and safflower oil may also reduce the risk of cardiovascular disease.[14]

Among omega-3 fatty acids, neither long-chain nor short-chain forms were consistently associated with breast cancer risk. High levels of docosahexaenoic acid (DHA), however, the most abundant omega-3 polyunsaturated fatty acid in erythrocyte (red blood cell) membranes, were associated with a reduced risk of breast cancer.[15] DHA is vital for the grey matter structure of the human brain, as well as retinal stimulation and neurotransmission.[1]

Contrary to conventional advice, an evaluation of evidence from 1966–1973 pertaining to the health impacts of replacing dietary saturated fat with linoleic acid found that participants in the group doing so had increased rates of death from all causes, coronary heart disease, and cardiovascular disease.[16] Although this evaluation was disputed by many scientists,[17] it fueled debate over worldwide dietary advice to substitute polyunsaturated fats for saturated fats.[18]

Pregnancy

Polyunsaturated fat supplementation does not decrease the incidence of pregnancy-related disorders, such as hypertension or preeclampsia, but may increase the length of gestation slightly and decreased the incidence of early premature births.[1]

Expert panels in the United States and Europe recommend that pregnant and lactating women consume higher amounts of polyunsaturated fats than the general population to enhance the DHA status of the fetus and newborn.[1]

Cancer

Results from observational clinical trials on polyunsaturated fat intake and cancer have been inconsistent and vary by numerous factors of cancer incidence, including gender and genetic risk.[13] Some studies have shown associations between higher intakes and/or blood levels of polyunsaturated fat omega-3s and a decreased risk of certain cancers, including breast and colorectal cancer, while other studies found no associations with cancer risk.[13][19]

Dietary sources

Properties of vegetable oils[20][21]
The nutritional values are expressed as percent (%) by mass of total fat.
TypeProcessing
treatment[22]
Saturated
fatty acids
Monounsaturated
fatty acids
Polyunsaturated
fatty acids
Smoke point
Total[20]Oleic
acid
(ω-9)
Total[20]α-Linolenic
acid
(ω-3)
Linoleic
acid
(ω-6)
ω-6:3
ratio
Avocado[23]11.670.652–66
[24]
13.5112.512.5:1250 °C (482 °F)[25]
Brazil nut[26]24.832.731.342.00.141.9419:1208 °C (406 °F)[27]
Canola[28]7.463.361.828.19.118.62:1204 °C (400 °F)[29]
Coconut[30]82.56.361.7175 °C (347 °F)[27]
Corn[31]12.927.627.354.715858:1232 °C (450 °F)[29]
Cottonseed[32]25.917.81951.915454:1216 °C (420 °F)[29]
Cottonseed[33]hydrogenated93.61.50.60.20.31.5:1
Flaxseed/linseed[34]9.018.41867.853130.2:1107 °C (225 °F)
Grape seed 10.414.814.3  74.90.1574.7very high216 °C (421 °F)[35]
Hemp seed[36]7.09.09.082.022.054.02.5:1166 °C (330 °F)[37]
High-oleic safflower oil[38]7.575.275.212.8012.8very high212 °C (414 °F)[27]
Olive, Extra Virgin[39]13.873.071.310.50.79.814:1193 °C (380 °F)[27]
Palm[40]49.337.0409.30.29.145.5:1235 °C (455 °F)
Palm[41]hydrogenated88.25.70
Peanut[42]16.257.155.419.90.31819.661.6:1232 °C (450 °F)[29]
Rice bran oil2538.438.436.62.234.4[43]15.6:1232 °C (450 °F)[44]
Sesame[45]14.239.739.341.70.341.3138:1
Soybean[46]15.622.822.657.77517.3:1238 °C (460 °F)[29]
Soybean[47]partially hydrogenated14.943.042.537.62.634.913.4:1
Sunflower[48]8.9963.462.920.70.1620.5128:1227 °C (440 °F)[29]
Walnut oil[49]unrefined9.122.822.263.310.452.95:1160 °C (320 °F)[50]

Polyunsaturated fat can be found mostly in nuts, seeds, fish, seed oils, and oysters.[1] "Unsaturated" refers to the fact that the molecules contain less than the maximum amount of hydrogen (if there were no double bonds). These materials exist as cis or trans isomers depending on the geometry of the double bond.

FoodSaturatedMono-
unsaturated
Poly-
unsaturated
As weight percent (%) of total fat
Cooking oils
Algal oil[51]4924
Canola[52]86428
Coconut oil87130
Corn oil132459
Cottonseed oil[52]271954
Olive oil[53]147311
Palm kernel oil[52]86122
Palm oil[52]513910
Peanut oil[54]174632
Rice bran oil253837
Safflower oil, high oleic[55]67514
Safflower oil, linoleic[52][56]61475
Soybean oil152458
Sunflower oil[57]112069
Mustard oil115921
Dairy products
Butterfat[52]66304
Cheese, regular64293
Cheese, light60300
Ice cream, gourmet62294
Ice cream, light62294
Milk, whole62284
Milk, 2%62300
Whipping cream[58]*66265
Meats
Beef33385
Ground sirloin38444
Pork chop35448
Ham354916
Chicken breast293421
Chicken342330
Turkey breast302030
Turkey drumstick322230
Fish, orange roughy231546
Salmon283328
Hot dog, beef42485
Hot dog, turkey284022
Burger, fast food36446
Cheeseburger, fast food43407
Breaded chicken sandwich203932
Grilled chicken sandwich264220
Sausage, Polish374611
Sausage, turkey284022
Pizza, sausage413220
Pizza, cheese60285
Nuts
Almonds dry roasted96521
Cashews dry roasted205917
Macadamia dry roasted15792
Peanut dry roasted145031
Pecans dry roasted86225
Flaxseeds, ground82365
Sesame seeds143844
Soybeans142257
Sunflower seeds111966
Walnuts dry roasted92363
Sweets and baked goods
Candy, chocolate bar59333
Candy, fruit chews144438
Cookie, oatmeal raisin224727
Cookie, chocolate chip354218
Cake, yellow602510
Pastry, Danish503114
Fats added during cooking or at the table
Butter, stick63293
Butter, whipped62294
Margarine, stick183939
Margarine, tub163349
Margarine, light tub194633
Lard394511
Shortening254526
Chicken fat304521
Beef fat41433
Goose fat[59]335511
Dressing, blue cheese165425
Dressing, light Italian142458
Other
Egg yolk fat[60] 364416
Avocado[61] 167113
Unless else specified in boxes, then reference is:
* 3% is trans fats

Non-dietary applications

PUFA's are significant components of alkyd resins, which used in coatings.[3]

See also

References

Citations

  1. "Essential Fatty Acids". Micronutrient Information Center, Oregon State University, Corvallis, OR. May 2014. Retrieved 24 May 2017.
  2. "Omega-3 fatty acids, fish oil, alpha-linolenic acid". Mayo Clinic. 2017. Retrieved 24 May 2017.
  3. Anneken, David J.; Both, Sabine; Christoph, Ralf; Fieg, Georg; Steinberner, Udo; Westfechtel, Alfred (2006). "Fatty Acids". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a10_245.pub2. ISBN 3527306730.
  4. Buckley MT, et al. (2017). "Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes". Mol Biol Evol. 34 (6): 1307–1318. doi:10.1093/molbev/msx103. PMC 5435082. PMID 28333262.
  5. Jiao, Jingjing; Zhang, Yu (2013). "Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals". Chemical Reviews. 113 (5): 3799–3814. doi:10.1021/cr300007p. PMID 23421688.
  6. Moya Moreno, MC; Mendoza Olivares, D; Amézquita López, FJ; Gimeno Adelantado, JV; Bosch Reig, F (September 13, 1999). "Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy". Talanta. 50 (2): 269–75. doi:10.1016/S0039-9140(99)00034-X. PMID 18967717.
  7. Baggott, James (1997). The divinylmethane pattern in fatty acids. Salt Lake City, UT: Knowledge Weavers.
  8. "National nutrient database for standard reference, release 23". United States Department of Agriculture, Agricultural Research Service. 2011. Archived from the original on 2015-03-03. Retrieved 2009-02-22.
  9. "Fats explained" (PDF). HEART UK – The Cholesterol Charity. Retrieved 20 February 2019.
  10. "Key Recommendations: Components of Healthy Eating Patterns". Dietary Guidelines 2015-2020. Retrieved 20 February 2019.
  11. "Live Well, Eat well, Fat: the facts". NHS. Retrieved 20 February 2019.
  12. "Dietary Guidelines for Indians - A Manual" (PDF). Indian Council of Medical Research, National Institute of Nutrition. Archived from the original (PDF) on 2018-12-22. Retrieved 2019-02-20.
  13. "Omega-3 Fatty Acids and Health: Fact Sheet for Health Professionals". US National Institutes of Health, Office of Dietary Supplements. 2 November 2016. Retrieved 5 April 2017.
  14. Willett WC (September 2007). "The role of dietary n-6 fatty acids in the prevention of cardiovascular disease". Journal of Cardiovascular Medicine. 8 (Suppl 1): S42-5. doi:10.2459/01.JCM.0000289275.72556.13. PMID 17876199. S2CID 1420490.
  15. Pala V, Krogh V, Muti P, Chajès V, Riboli E, Micheli A, Saadatian M, Sieri S, Berrino F (July 2001). "Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study". Journal of the National Cancer Institute. 93 (14): 1088–95. doi:10.1093/jnci/93.14.1088. PMID 11459870.
  16. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR (February 2013). "Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis". BMJ. 346: e8707. doi:10.1136/bmj.e8707. PMC 4688426. PMID 23386268.
  17. Interview: Walter Willett (2017). "Research Review: Old data on dietary fats in context with current recommendations: Comments on Ramsden et al. in the British Medical Journal". TH Chan School of Public Health, Harvard University, Boston. Retrieved 24 May 2017.
  18. Weylandt KH, Serini S, Chen YQ, Su HM, Lim K, Cittadini A, Calviello G (2015). "Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence". BioMed Research International. 2015: 143109. doi:10.1155/2015/143109. PMC 4537707. PMID 26301240.
  19. Patterson RE, Flatt SW, Newman VA, Natarajan L, Rock CL, Thomson CA, Caan BJ, Parker BA, Pierce JP (February 2011). "Marine fatty acid intake is associated with breast cancer prognosis". The Journal of Nutrition. 141 (2): 201–6. doi:10.3945/jn.110.128777. PMC 3021439. PMID 21178081.
  20. "US National Nutrient Database, Release 28". United States Department of Agriculture. May 2016. All values in this table are from this database unless otherwise cited or when italicized as the simple arithmetic sum of other component columns.
  21. "Fats and fatty acids contents per 100 g (click for "more details"). Example: Avocado oil (user can search for other oils)". Nutritiondata.com, Conde Nast for the USDA National Nutrient Database, Standard Release 21. 2014. Retrieved 7 September 2017. Values from Nutritiondata.com (SR 21) may need to be reconciled with most recent release from the USDA SR 28 as of Sept 2017.
  22. "USDA Specifications for Vegetable Oil Margarine Effective August 28, 1996" (PDF).
  23. "Avocado oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  24. Ozdemir F, Topuz A (2004). "Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period" (PDF). Food Chemistry. Elsevier. pp. 79–83. Archived from the original (PDF) on 2020-01-16. Retrieved 15 January 2020.
  25. Wong M, Requejo-Jackman C, Woolf A (April 2010). "What is unrefined, extra virgin cold-pressed avocado oil?". Aocs.org. The American Oil Chemists' Society. Retrieved 26 December 2019.
  26. "Brazil nut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  27. Katragadda HR, Fullana A, Sidhu S, Carbonell-Barrachina ÁA (2010). "Emissions of volatile aldehydes from heated cooking oils". Food Chemistry. 120: 59–65. doi:10.1016/j.foodchem.2009.09.070.
  28. "Canola oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  29. Wolke RL (May 16, 2007). "Where There's Smoke, There's a Fryer". The Washington Post. Retrieved March 5, 2011.
  30. "Coconut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  31. "Corn oil, industrial and retail, all purpose salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  32. "Cottonseed oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  33. "Cottonseed oil, industrial, fully hydrogenated, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  34. "Linseed/Flaxseed oil, cold pressed, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  35. Garavaglia J, Markoski MM, Oliveira A, Marcadenti A (2016). "Grape Seed Oil Compounds: Biological and Chemical Actions for Health". Nutrition and Metabolic Insights. 9: 59–64. doi:10.4137/NMI.S32910. PMC 4988453. PMID 27559299.
  36. Callaway J, Schwab U, Harvima I, Halonen P, Mykkänen O, Hyvönen P, Järvinen T (April 2005). "Efficacy of dietary hempseed oil in patients with atopic dermatitis". The Journal of Dermatological Treatment. 16 (2): 87–94. doi:10.1080/09546630510035832. PMID 16019622. S2CID 18445488.
  37. Melina V. "Smoke points of oils" (PDF). veghealth.com. The Vegetarian Health Institute.
  38. "Safflower oil, salad or cooking, high oleic, primary commerce, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  39. "Olive oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  40. "Palm oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  41. "Palm oil, industrial, fully hydrogenated, filling fat, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  42. "Oil, peanut". FoodData Central. usda.gov.
  43. Orthoefer FT (2005). "Chapter 10: Rice Bran Oil". In Shahidi F (ed.). Bailey's Industrial Oil and Fat Products. Vol. 2 (6th ed.). John Wiley & Sons, Inc. p. 465. doi:10.1002/047167849X. ISBN 978-0-471-38552-3.
  44. "Rice bran oil". RITO Partnership. Retrieved 22 January 2021.
  45. "Oil, sesame, salad or cooking". FoodData Central. fdc.nal.usda.gov. 1 April 2019.
  46. "Soybean oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  47. "Soybean oil, salad or cooking, (partially hydrogenated), fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  48. "FoodData Central". fdc.nal.usda.gov.
  49. "Walnut oil, fat composition, 100 g". US National Nutrient Database, United States Department of Agriculture.
  50. "Smoke Point of Oils". Baseline of Health. Jonbarron.org.
  51. "Thrive Culinary Algae Oil". Retrieved 7 January 2019.
  52. Anderson D. "Fatty acid composition of fats and oils" (PDF). Colorado Springs: University of Colorado, Department of Chemistry. Retrieved April 8, 2017.
  53. "NDL/FNIC Food Composition Database Home Page". United States Department of Agriculture, Agricultural Research Service. Retrieved May 21, 2013.
  54. "Basic Report: 04042, Oil, peanut, salad or cooking". USDA. Archived from the original on March 9, 2016. Retrieved 16 January 2015.
  55. "Oil, vegetable safflower, oleic". nutritiondata.com. Condé Nast. Retrieved 10 April 2017.
  56. "Oil, vegetable safflower, linoleic". nutritiondata.com. Condé Nast. Retrieved 10 April 2017.
  57. "Oil, vegetable, sunflower". nutritiondata.com. Condé Nast. Retrieved 27 September 2010.
  58. USDA Basic Report Cream, fluid, heavy whipping
  59. "Nutrition And Health". The Goose Fat Information Service.
  60. "Egg, yolk, raw, fresh". nutritiondata.com. Condé Nast. Retrieved 24 August 2009.
  61. "09038, Avocados, raw, California". National Nutrient Database for Standard Reference, Release 26. United States Department of Agriculture, Agricultural Research Service. Archived from the original on January 10, 2014. Retrieved 14 August 2014.

General References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.