Prime reciprocal magic square

A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number.

Consider unit fractions such as 1/2, 1/3 or 1/7. In base ten, one-half has no repeating decimal while one-third repeats 0.3333... indefinitely. The remainder of one-seventh, on the other hand, repeats over six digits as 1/7 = 0.1428571428571...

Multiples of 1/7 exhibit cyclic permutations of these six digits:[1]

1/7 = 0·1 4 2 8 5 7...
2/7 = 0·2 8 5 7 1 4...
3/7 = 0·4 2 8 5 7 1...
4/7 = 0·5 7 1 4 2 8...
5/7 = 0·7 1 4 2 8 5...
6/7 = 0·8 5 7 1 4 2...

If the digits are laid out as a square, each row will sum to 1 + 4 + 2 + 8 + 5 + 7 = 27. Each column will equivalently add to 27 and consequently we have a magic square:

1 4 2 8 5 7
2 8 5 7 1 4
4 2 8 5 7 1
5 7 1 4 2 8
7 1 4 2 8 5
8 5 7 1 4 2

However, neither diagonals add to 27. All other prime reciprocals in base ten with maximum period of p−1 produce squares in which all rows and columns sum to the same total.

When an even repeating cycle produced from an odd prime reciprocal (such as 1/7 = 0.142857142857...) is mirrored halfway accordingly (i.e. 142857 and 857142), the pair of complementary sequences of digits generated will yield a sequence of 9s when added:

1/7 = 0.142,857,142,857 ...
     +0.857,142
      ---------
      0.999,999
1/11 = 0.09090,90909 ...
      +0.90909,09090
       -----
       0.99999,99999
1/13 = 0.076,923 076,923 ...
      +0.923,076
       ---------
       0.999,999
1/17 = 0.05882352,94117647
      +0.94117647,05882352
      -------------------
       0.99999999,99999999
1/19 = 0.052631578,947368421 ...
      +0.947368421,052631578
       ----------------------
       0.999999999,999999999

This is a result of Midy's theorem.[2][3]

Concerning the number of decimal places shifted in the quotient per multiple of 1/19, a factor of 2 in the numerator produces a shift of one decimal place to the right in the quotient:

01/19 = 0.052631578,947368421
02/19 = 0.1052631578,94736842
04/19 = 0.21052631578,9473684
08/19 = 0.421052631578,947368
16/19 = 0.8421052631578,94736

In the 1/19 magic square with maximum period 18, there is a row-and-column total of 81 that is also that obtained by both diagonals. This makes it the first full (non-normal) prime reciprocal magic square in base-10:[4]

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...
02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...
03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...
04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...
05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...
06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...
07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...
08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...
09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...
10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...
11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...
12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...
13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...
14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...
15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...
16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...
17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...
18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

The next prime number in decimal whose reciprocal can be used to produce a non-normal full prime reciprocal magic square is 383.[5]

The same phenomenon occurs with other primes in other bases, and the following table lists some of them, giving the prime, base, and magic total (derived from the formula base−1 × prime−1 / 2):

PrimeBaseTotal
191081
5312286
5334858
59229
67233
83241
8919792
167685,561
199413,960
19915014,751
2112105
2233222
29314721,316
3075612
383101,719
38936069,646
3975792
42133870,770
48761,215
503420105,169
587368107,531
5933592
6318727,090
677407137,228
757759286,524
787134,716
8113810
9771,222595,848
1,033115,160
1,18713579,462
1,30752,612
1,499117,490
1,8771916,884
1,933146140,070
2,0112625,125
2,02721,013
2,1416366,340
2,53921,269
3,18797152,928
3,3731116,860
3,659126228,625
3,9473567,082
4,26122,130
4,81322,406
5,64775208,902
6,11336,112
6,27723,138
7,28323,641
8,38724,193

See also

References

  1. Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books. pp. 171–174. ISBN 0-14-008029-5. OCLC 39262447. S2CID 118329153.
  2. Rademacher, Hans; Toeplitz, Otto (1957). The Enjoyment of Mathematics: Selections from Mathematics for the Amateur (2nd ed.). Princeton, NJ: Princeton University Press. pp. 158–160. ISBN 9780486262420. OCLC 20827693. Zbl 0078.00114.
  3. Leavitt, William G. (June 1967). "A Theorem on Repeating Decimals". The American Mathematical Monthly. Mathematical Association of America. 74 (6): 669–673. doi:10.2307/2314251. JSTOR 2314251.
  4. Andrews, William Symes (1917). Magic Squares and Cubes (PDF). Chicago, IL: Open Court Publishing Company. pp. 176, 177. ISBN 9780486206585. MR 0114763. OCLC 1136401. Zbl 1003.05500.
  5. Sloane, N. J. A. (ed.). "Sequence A072359 (Primes p such that the p-1 digits of the decimal expansion of k/p (for k equal to 1,2,3,...,p-1) fit into the k-th row of a magic square grid of order p-1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-09-04.

Eric W. Weisstein, "Midy's Theorem." From MathWorld — A Wolfram Web Resource

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.