Radiative Auger effect

Radiative Auger effect is a decay channel of an inner-shell atomic vacancy state, in which an x-ray photon is emitted accompanying simultaneous promotion of an electron into either a bound or a continuum state. Thus the transition energy is shared between the photon and the electron.[1] The effect was first observed by F. Bloch and P. A. Ross,[2] with initial theoretical explanation by F. Bloch.[3] Later the effect has also been observed on defects in the solid-state,[4] semiconductor quantum emitters,[5][6] as well as two-dimensional electron gases.[7][8] In the latter case, the effect is typically referred to as shake-up.

See also

References

  1. Åberg, T. (1971-11-01). "Theory of the Radiative Auger Effect". Physical Review A. 4 (5): 1735–1740. Bibcode:1971PhRvA...4.1735A. doi:10.1103/PhysRevA.4.1735.
  2. Bloch, F.; P. A. Ross (1935-06-01). "Radiative Auger Effect". Physical Review. 47 (11): 884. Bibcode:1935PhRv...47..884B. doi:10.1103/PhysRev.47.884.
  3. Bloch, F. (1935). "Double Electron Transitions in X-Ray Spectra". Physical Review. 48 (3): 187–192. Bibcode:1935PhRv...48..187B. doi:10.1103/PhysRev.48.187.
  4. Dean, P. J.; Cuthbert, J. D.; Thomas, D. G.; Lynch, R. T. (1967-01-23). "Two-Electron Transitions in the Luminescence of Excitons Bound to Neutral Donors in Gallium Phosphide". Physical Review Letters. American Physical Society (APS). 18 (4): 122–124. doi:10.1103/physrevlett.18.122. ISSN 0031-9007.
  5. Löbl, Matthias C.; Spinnler, Clemens; Javadi, Alisa; Zhai, Liang; Nguyen, Giang N.; Ritzmann, Julian; Midolo, Leonardo; Lodahl, Peter; Wieck, Andreas D.; Ludwig, Arne; Warburton, Richard J. (2020-06-15). "Radiative Auger process in the single-photon limit" (PDF). Nature Nanotechnology. Springer Science and Business Media LLC. 15 (7): 558–562. doi:10.1038/s41565-020-0697-2. ISSN 1748-3387. PMID 32541943. S2CID 208309976.
  6. Antolinez, Felipe V.; Rabouw, Freddy T.; Rossinelli, Aurelio A.; Cui, Jian; Norris, David J. (2019-11-05). "Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets". Nano Letters. American Chemical Society (ACS). 19 (12): 8495–8502. doi:10.1021/acs.nanolett.9b02856. hdl:20.500.11850/386327. ISSN 1530-6984. PMID 31686517. S2CID 207903415.
  7. Skolnick, M.S.; Nash, K.J.; Mowbray, D.J.; Saker, M.K.; Fisher, T.A.; Whittaker, D.M.; Peggs, D.W.; Miura, N.; Sasaki, S.; Smith, R.S.; Bass, S.J. (1994). "Fermi sea shake-up in quantum well luminescence spectra". Solid-State Electronics. Elsevier BV. 37 (4–6): 825–829. doi:10.1016/0038-1101(94)90306-9. ISSN 0038-1101.
  8. Manfra, M. J.; Goldberg, B. B.; Pfeiffer, L.; West, K. (1998-04-15). "Anderson-Fano resonance and shake-up processes in the magnetophotoluminescence of a two-dimensional electron system". Physical Review B. American Physical Society (APS). 57 (16): R9467–R9470. arXiv:cond-mat/9804068. doi:10.1103/physrevb.57.r9467. ISSN 0163-1829. S2CID 14351818.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.